数学
高校生

どうして0≦と決められるのでしょうか?

漸化式と極限(3) α=1, an+1=√2an+3 (n=1, 2, 3, ......) で定義される数列について、次の問いに答えよ。 (1) 数列{an}が極限値αをもつとき, αの値を求めよ. Check 例題105 「解答 Focus (2) (1)のαについて, antials // lanal を示せ。 (3) limana であることを示せ。 818 考え方 (1) liman =α のとき, liman+1=α であるから, これを与えられた漸化式に代入して考える。 求めた αが条件に合うか確認が必要. (2) 有理化を利用して左辺を式変形する。 Lo (3) 実際に liman を求める. はさみうちの原理を利用する。 72-00 (1) liman=α とすると liman=liman+1=α なので、 8218 漸化式 an+1=√2+3より, a=√2a+3 両辺を2乗して, Q2=2a+3 より, α=-1 は ①を満たさないから, (2)|an+1-3|=|√2an+3-3|=| よって, 1 無限数列 1 √2an+3+3 2, lim 2. n100 n→∞ 2 √2an+3+3 ここで, α=1 より, 2n-1 3 lim|an-3|=0 (3) (2)より,|an-3|≦ 2/21an-1-312) =(-²) ²1a₁-2-3 |2an-6| -lan-3| ≤²/3an-31 2 |an+1-3|≦ // lan-3|は成り立つ。 α=3 ↑ (2an+3)-91 √2an+3+3 α=-1,3 n→∞ 2n-1 0≤lan-31≤2 (2¹¹ =0 とはさみうちの原理より, bast よって, liman=3 となり,題意は成り立つ. liman = α = liman+1=a 1218 YA *** 10 2n-1 | an-2-3| ≤... (²²¹a₁-31 習 α=1, an+1=√an+2 (n=1,2,3,……) 15 で定義される数列{a.) について, lim an を求めよ. 11100 ** y=x/ a₁=1 das 235 y=√2x+3 ²-2a-3=0 +(a+1)(a-3)=0 無理方程式 (p.283 参照) x 第3章 α= -1, 3 が ① を満 たすか確認する. (1)で求めたαを代入 し,漸化式を用いて 不等式の左辺を変形 する。 分子の有理化 √2+3≧0より、 √2an+3+3=3 11 1 √2an+3+3 3 (2) をくり返し用いる. |α-3|=|1-3| =|-2|=2
極限 はさみうちの原理 数学ⅲ

回答

y=√○ の値域は0以上です!写真の右上のグラフ見ればわかりやすいと思います!

あられ

よくよく考えたら絶対値ですね笑
ありがとうございました!

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉