数学
高校生

写真のところの因数分解?の仕方が分からないので教えてください!

△ABP において 合LAPB △ABC において, 余弦定理により =180°-(105+ 4+5°-6° T 2.4·5 8 ZAPB=180°-(ZPAB+ZPBA)=45° 09 sin45° COS C = AP =45° 正弦定理により sin 30° .50 GAP= よって, △BCD において, 余弦 50sin30° =25/2(m) BD'34°+2°-2·4.2. よって AP= sin 45° 8 BD=18 △APQにおいて ZPAQ=ZPAB-ZQAB=60° 弦定理により BD>0 であるから ロLPAQ=106-6 PQ'=(25/2)?+ (50/2 )?-2·25/2·50/2 cos 60° D+PQ=AP4J0 126 00+PQ=AP+A00 Se-Ter -2AP·AQC0S 4 PR △ABC において, 次の等式が成 =(25/2){1+2°-2-2) (1) (6-c)sinA+(c-a)sinB C=D15 お合ち大 (2) c(cos B-cos A)= (a-b)(1 =25°.2(1+4-2)==25°.6 ゆえに, PQ>0 であるから PQ=25/6 (m) (1) △ABC の外接円の半径をR (6-c)sinA+(c-a)sin =(6-c). D 2R 9 PR 2R 水平な地面の地点Hに, 地面に垂直にポールが立っている。 2つの地点 A, BからポーM 124 端を見ると, 仰角はそれぞれ30° と 60° であった。また, 地面上の測量では A, B間の 20m, ZAHB=60° であった。 このとき, ポールの高さを求めよ。 ただし,目の高さは いものとする。 ab-ca+bc-ab+ca- 2R ポールの先端をP, ポールの高さを PH=xm とおく。直角三角形 0= したがって、与えられた等式 (2) 余弦定理により c(cos B-cos.A)-(a-b =c(cosB-cos.A)-(a-b C+αーぴ +c- d APH において 単位:m -=HV tan 30° 30% A X X (m) x A E 26c ニ D 直角三角形 BPH において 3x 3。 ワー9+0 H Check (heck? heck!
式の因数分解の仕方を教えてください!

回答

まだ回答がありません。

疑問は解決しましたか?