数学
高校生
解決済み

式変形について

鉛筆で囲った部分は、この分子の形で計算すると楽なのは分かるのですが、どうやって一行目の式から思い付くのか思考回路(?)を教えて欲しいです。

(x+2) (2) 両辺の絶対値の自然対数をとると logly=3log|1++log|1-2| - log|1- -3log|1+ 2x| 両辺をxで微分すると 2 1 6 3 ニー 1+x 1-2x 1-x 1+2x y 3 6 2 1 1-2x T1-x -2+2x+1-2.x (1-2x)(1-x) ニ 1+x 1+2x 3+6x-6-6x ニ -3 -1 三 (1-2x)(1-x) -3(1-2x(1-x) (1+xX1+2x) ニ "tanr 2(4x?13x+2) よって yy= 2(4x-3x+2) golx 2(1+x){4x-3x+2) (1-x){1+2x)*

回答

✨ ベストアンサー ✨

分子に出てくるxが消えることを考えましょう
1+xと1+2xなら分子はそれぞれ3と-6ですね
分配することを考えたら-6xと6xができることはすぐイメージできるかと

blue

なるほど!理解できました!昨日の質問まで遡って答えてくださり、本当にありがとうございます!

この回答にコメントする
疑問は解決しましたか?