Mathematics
高中
已解決

次の問題の青線のところで何故nを3kと考えるのでしょうか?どなたか解説お願いします🙇‍♂️

(1) 複素数zz+ 1 2 1 = √3 を満たすとき,230 + の値を求めよ。 30 2° = {cs(土)+isin(1/2)}+{cos(土/1/1) +isin (土/03)} 3 = cos(± 2) + isin(± 2x) + cos(+ 2 =) + sin(2x) 2n 3 1 (2) 複素数zz+ Z 1 = -1 を満たすとき, w=z"+ の値を求め z" 2n 2n = COS -π±isin よ。 ただし, n は整数とする。 (1) 230 + (1)21-2+1)- 130 = z+ と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 具体的に考える 例題55) 2+1/2=15より2-32+1=0 ⇒ 極形式 2= 3 2n 3 = 2 cos π (複号同順) (ア) n=3k (kは整数) のとき w=2cos(2kz) =2 (イ) n=3k+1 (kは整数) のとき w=2cos2kz+ 31/37) = = 2 cos (ウ) n =3k+2 (kは整数) のとき 3 2n 2n +cost π干isin -π 3 3 23 =-1 思考プロセス 1 解 (1) + 2 よって 2 = = √3 より z-√3z+1=0 √3+√√(3) -4・1・1 /3 1 2 土 i 2 2 = cos(土)+isin(±)(複号同順) このとき, ドモアブルの定理により w=2cos2kz+ 4 1=2c08131 πC = -1 (ア)~(ウ)より, んを整数とすると [2 (n=3k のとき) (n=3k+1,3k+2 のとき) w= l-1 1 1 Z z" 複素数z が z+ = k ... ① (kは実数) を満たすとする。 Point z+ =kのときの " + の値 2.30 = {cos(土)+isin(土)} = cos (±5π) +isin (±5π) (複号同順) =-1 = ゆえに2/21 230 したがって 230 + 1 = 30 1-1=-2 1 2 よって (2) 2+ =-1 より -1±√3i z+z+1=0 2 = 2 土 = =cos (12/31) +isin (+12/28) (復号同順) このとき, ドモアブルの定理により w = 2" + 1 =z"+z 2 ① より z-kz+1=0 この2解は互いに共役な複素数 z, zであるから, 解と係数の関係よ よって |zl=1 すなわち |z=1 ゆえに, z=cosl+isin) とおくと z"=cosno+isinn0 したがって 1 2"+ =2"+(2")-1 2" = = (cosno+isinn0)+(cosn0+isinn0) (cosn0+isinn0)+(cosn0-isinn0) =2cosn0 2次方程式の解の公式を 用いてzの値を求める。 このことから,z" + 1 2" はnの値に関わらず実数となることも分かる YA J3 2 1 2 練習 57 (1) 複素数zが z+ = 1 2 を満たすとき, ' + 2 2 1 (2)複素数zz+ /2 を満たすとき, w = z" + 2 1 12

解答

✨ 最佳解答 ✨

nが3の倍数(3k)の時、分母の3が約分で消えるが、nが3の倍数でない時(3k±1)、分母の3が消えない。nのとり方によってcosの値も変化するため場合分けが必要というわけです

星光

なるほど!有り難うございます!

留言
您的問題解決了嗎?