Mathematics
高中
已解決

高一数Aです。

124(4)の1行目(a5乗🟰7でわった…)のところから意味がわかりません。

解説して頂けるとありがたいです🙇‍♂️

○ 整数 n は, たときの余 基本 例題 124 割り算の余りの性質 000 a は整数とする。αを7で割ると3余り, 6を7で割ると4余る。このとき, 次の数を7で割った余りを求めよ。 (1)α+26 (2) ab (3) α^ (4) a2021 p.536 基本事項 1,3 指針 前ページの基本事項の割り算の余りの性質を利用してもよいが,(1)~(3)は, a=7k+3,b=71+4 と表して考える基本的な方針で解いてみる。 (3)(7k+3)を展開して、7×○+▲の形を導いてもよいが計算が面倒 d' = (42)2 に 着目し,まず,2を7で割った余りを利用する方針で考えるとよい。 (4) 割り算の余りの性質 4αをmで割った余りは,r” をmで割った余りに等しい を利用すると,求める余りは「32021を7で割った余り」であるが,32021 の計算は不可 能。 このような場合,まず α” をmで割った余りが1となるnを見つけることか ら始めるのがよい。 CHART 割り算の問題 A=BQ+R が基本 537 (割られる数) = (割る数)×(商)+(余り) a=7k+3,6=7l+4(k, lは整数) と表される。 解答(1) α+26=7k+3+2(71+4)=7(k+2l)+3+8 IS+ bh=7(k+21+1)+4 したがって,求める余りは 4 =7(7kl+4k+3 +1) +5 7 を除法の原 と呼ぶこと る。 -7.(-4)-2 ると,0≦x<b (8+1 (2) ab=(7k+3)(71+4)=49kl+7(4k+3l)+12 (I+ したがって、求める余りは 5 Tour to a hely かしいり たさない。 のときa=bg りαはもの倍 5. bはαの約数で Bk のとき, A 3の倍数。 n<b ると (3)²=(7k+3)2=49k²+42k+9=7(7k²+6k+1)+2 d2=7m+2(m は整数) と表されるから Da=(a²)²=(7m+2)²=49m²+28m+4 したがって=7(7m²+4m)+4 したがって,求める余りは 今 AE)E= (4)(3)より, αを7で割った余りが4であるから,7 で割った余りは, 4・3を7で割った余り5に等しい。 ゆえに,αを7で割った余りは5・3を7で割った余り 1に等しい。 α2021=(a)336.α5であるから, 求める余りは,1336.5=5 を7で割った余りに等しい。 したがって, 求める余りは 5 別解 割り算の余りの性質 を利用した解法。 (1)2を7で割った余りは 2(2=70+2) であるか 25を7で割った余 りは2・48を7で割っ た余りに等しい。 ゆえに α+26を7で 割った余りは3+1=4を 7で割った余りに等しい。 よって、 求める余りは 4 (2) abを7で割った余り は3・4=12を7で割った 余りに等しい。 よって、 求める余りは 5 (3)αを7で割った余り は3=81 を7で割った 余りに等しい。 よって、 求める余りは 4 このとき

解答

✨ 最佳解答 ✨

sin

ありがとうございます🙏✨️

留言
您的問題解決了嗎?