Mathematics
高中
已解決

解説お願いします。数Cベクトルです。

(1)の問題で、参考書の方の解説は理解しているのですが、私の解答の間違いが分かりません。
どこが間違えているのか教えていただきたいです。

よろしくお願いします。

思考プロセス 例題 32 三角形の形状・心・心との内 次の等式が成り立つとき, △ABCはどのような形の三角形か。 (1) AB AC = |AB|2| . (2) AB・BC=BC・CA « ReAction 三角形の形状は、辺の長さの関係を調べよ IIB例題 77 ★★★☆ 目標の言い換え △ABCの形状は ? (UE) 75 (ア) A (イ) HLA 長さの等しい辺, 直角となる頂点を考える。 これまで ベクトルの場合 例 (ア) AB AC (二等辺三角形) |AB|=|AC| BOC (イ) BC2=AB2 + AC2 ABAC = 0 B CO nod (A=90°直角三角形) A (2) [左辺・・・ ∠B をはさむ2ベクトル ∠Bと∠Cについて対等 ... [右辺 ∠Cをはさむ2ベクトル > AB と AC の対等性を予想し,始点をAにそろえる。 B C& AO 解 (1) AB·AC = |AB|より 2 AB・AC-ABAB = 0 AB-AB-AB (80+70) AB・(AC-AB) = 0 A AO) よって ABBC = 0 AB = 0, BC ≠ 0 であるから B AB 1 BC 180+800 したがって, △ABC は ∠B=90°の直角三角形 80 AO (別解 + a+bto 単に「直角三角形」 だけ では不十分である。 与式は AB 0 であるから JAB||AC|cosA=|ABC- |AC|cosA= |ABO これが成り立つのは,∠B=90°のときであるから, △ABC は ∠B=90°の直角三角形 Aから IACIAO |AB| + B C |BC| = |CB| ≠ 0 より |BA | cosb1 = |CA|cosin (別解) 与式より BA・BC=CB・CA |BA||BC|cosb1 = |CB||CA | cosbz めに、
32 \\/ AB². AC² = LABI (ABL² = AB- AB 2 AB· AC² = AB · AB +1% AB² = AC よって、AB・ACの二等辺三角形

解答

✨ 最佳解答 ✨

「より」の前後、
「ベクトルで割る」というようなことはできません
定義されていないので

淳華

ありがとうございます!

留言
您的問題解決了嗎?