Mathematics
高中

解説お願いします

4 ある日、太郎さんと花子さんのクラスでは,数学の授業で先生から次のような宿題が出された. [宿題] △ABCの内部に点Pを取り, 点Pから直線 BCにおろした垂線をPD, 点Pから 直線CA に下ろした垂線をPE とする. また, 点Aから直線 BCに下した垂線の長さを ha, 点Bから直線 CA に下ろした垂線の長さを ん と置く. PD:hA=PE:hp=1:3 であるとき, △PAB と △ABCの面積比を求めよ. (1) 太郎さんは, 宿題について,つぎのような構想をもとに, 正解を得た. 太郎さんの構想 △ABCの面積をSとすると, △PBC, △PCA の面積もSを用いて表すことができる. それらを用いて, △PABもSを用いて表す. 太郎さんの解答・ △ABCの面積をSとすると △PBC = △PCA = ア S と表せる. よって △PAB= イ S であるから △PAB △ABC= イ : 1 (i) ア イ に当てはまるものを,次の①~⑦のうちから一つずつ選べ。但し、同じ ものを選んでもよい . ⑩ 2 0 3 ② 4 ③ 6 ④ 12 [⑤ 1-3 1 ⑥ DI ⑦ 4 太郎: 宿題の点Pはどのような点なのだろう. 花子 : 直線 CP と直線ABの交点をF と置くと, AF:BF = ウがわかるよ. 太郎: ということは, APFとAPCの面積比から, 点Pは△ABCの エ であると いうことがわかるね. (ii) ① 2:1 ② 3:1 [③ 1:2 ウ に当てはまるものを、次の⑩~④のうちから一つ選べ。 1:1 1:3 (iii) エ に当てはまるものを,次の①~③のうちから一つ選べ。 ⑩重心 ①外心 ②垂心 ③傍心 -5-

解答

尚無回答

您的問題解決了嗎?