Mathematics
高中
数IIです
証明の過程の式は理解できるのですが、なぜこの証明で4点EBCFが同一円周上にあると言えるのかが分かりません
137
B
E
→
2.3
(1) AB:BC:CA: 12:13
<BAC=90°
BD=1
わべきの定理より
BD2=BA×EB
FY
に
2 x 2
BE=/12/
23.CF=3
2.×CF=9
9
9
3/3
CF
23
6
2
よってAEF
・2の直角三角形
∠AFE =60°
これはLABCの対角の外角なので
∠ABC
LAFE
よって4点E.B.C.Fは圃一円周上
37 [キートレーニングⅠⅡABC 問題199]
△ABCは AB=2, BC=4, CA=2√3 を満たし
ている。頂点Aから辺BCに下ろした垂線をAD
とし、線分AD を直径とする円が2辺AB, CA
と交わる点をそれぞれE,Fとする。ただし,E,
FはAと異なる点とする。
A
F
E
B
D
C
(1) 4点E, B, C, F は 1 つの円周上にあること
を示せ。
(2)
EBFの面積を求めよ。
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8926
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6079
25
数学ⅠA公式集
5650
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5136
18