Mathematics
高中

条件の[1][2]はわかったんですけど[3]がよくわかりません。どういう計算で求めているのか教えてください!

(交わる 囲を求めよ。 p.134 応用例題 7 例題 放物線と軸の共有点の関係 24 2次関数y=x2-2mx+m+2のグラフとx軸のx>1の部分が, 異なる2点で交わるとき,定数mの値の範囲を求めよ。 考え方 f(x)=ax2+bx+c, D=62-4ac とする。a>0のとき, 放物線y=f(x)とx 軸との共有点のx座標をα, β(α<B) とすると,α,βと数々の大小関係につ いて ① ① α,Bがともにんより大⇔D>0, 軸の位置>k, f (k)>0 (2) α, βがともにんより小⇔D>0,軸の位置 <k, f(k)>0 ③kはαとβ の間 ⇔f(k)<0 (3) + a 軸β a 軸 B + k x k k x B x 解答 f(x)=x²-2x+m+2とするとf(x)=(x-m)²-m²+m+2 y=f(x) のグラフは下に凸の放物線で,軸は直線 x=mである。 この放物線とx軸のx>1の部分が,異なる2点で交わるのは,次の [1], [2], [3]が同時に成り立つときである。 [1] グラフと x 軸が異なる2点で交わる。 2次方程式f(x)=0の判別式をDとすると D=(-2m)2-4(m+2)=4(m²-m-2) D>0から m<-1,2<m ***** ① [2] 軸x=mについて m>1 ***** [3] f(1) > 0 すなわち 12-2m・1+m+2> 0 よって 3-m>0 したがって m<3 ****** ③ 3-m m x ① ② ③ の共通範囲を求めて 2<m<3 】3つの条件のうち [1], [2], [3] のそれぞれがない場合, グラフとx軸の 共有点の位置についてどのような場合が考えられるだろうか。
[3] f(1) > 0 すなわち 12-2m・1+m+20 よって 3-m>0 したがって m<3 ****** ③ ① ② ③ の共通範囲を求めて 2<m<3

解答

y=x²−2mx+m+2のxに1を代入する⇔
f(x)=x²−2mx+m+2とするとき、f(1)
と表現します

f(m)=x²−2mx+m+2とするのなら
f(1)はmに1を代入した式を表します

留言
您的問題解決了嗎?