Mathematics
高中
数検の問題です。
答えは 175 288 337です。
解き方 絞り込み方がわかりません。
よろしくお願いします。
問題5. (選択)
m
分数 (m,nは整数でn≠0)の形に表すことができる数を有理数といいます。
n
kを正の整数とします。 3辺の長さがいずれも有理数の直角三角形があって, その面積が
kであるとき,kを合同数といいます。
たとえば3辺の長さが3,4,5の三角形は3°+4=5°より直角三角形で,その面積
の三角形は
は6なので、6は合同数です。 また3辺の長さが
3 20 41
2'3' 6
2
2
20
²)²³=
3
6
2
より直角三角形で、その面積は5なので, 5は合同数です。
25200と7はいずれも合同数です。その根拠について,次の問いに答えなさい。 この
問題は解法の過程を記述せずに, 答えだけを書いてください。
(整理技能)
(1) 面積が25200で, 3辺の長さ a,b,cがいずれも100以上の整数である直角三角
形が存在します。 この整数a,b,c を求めなさい。 ただし, a<b<c とします。
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8923
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6069
51
詳説【数学A】第2章 確率
5839
24
ありがとうございます