Mathematics
高中
已解決
数3の積分です。
青印のところへの変形はどのようにしているのでしょうか。
また、赤のところで、普通に積分してはいけないのはどうしてでしょうか。
円環体の体積
[応用
例題
80<r<bのとき, 円x2+(y-b) = re をx軸のまわりに1回転
(*)
してできる回転体の体積を求めよ。
解 ¥y=b+√√r² - x²
をx軸のまわりに1回転してで
きる回転体の体積をV, とする。
また,半円 y=b-√r²-x
をx軸のまわりに1回転してで
2
きる回転体の体積をV とする。
このとき, 求める回転体の体積
Vは,V1からV2を引いたものである。
よって
V=V-V2
YA
y=b+√√r²-x²
5-1965.JP=2&
4лb
πb S² √r² - x² dx
-r
-r
b
y=b-√√r²_x²
[²_√r² − x² dx = ²/7 nr²
1
πr ²
O
右辺の定積分は半径rの半円の面積を表すから
r
= π
xf (b + √²-x²)dx=xf(b-√7²-x²)'dx
π
x
³2x=v
ゆえに
V = 4πb • ²/r² = 2π²br²
HVR
注意例題8の体積Vは、円の面積 m2 と円の中心 (0, b)がx軸のまわりに描
く円の周の長さ26の積に等しい。
5
15
20
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6083
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24
展開をしても解答のようにまとまりません、、
赤の方は置換積分すればできました!
ありがとうございます!