可知 1年以上以前 A⁴–B⁴=(A²+B²)(A²–B²) =(A²+B²)(A+B)(A–B) 令 A=2x–y B=x–2y 則 A+B=3(x–y), A–B=x+y (A+B)(A–B)=3(x–y)(x+y)=3x²–3y² A²=4x²–4xy+y² B²=x²–4xy+4y² A²+B² = 5x²–8xy+5y² = 5x²+5y² –8xy 所以 (A²+B²)(A+B)(A–B) =((5x²+5y²) –8xy)(3x²–3y²) ←後項分配律乘前面兩項 =15x⁴–15y⁴ –24x³y+24xy³。 留言
謝謝