Mathematics
高中
関数の問題です。マーカー部分が分かりません教えてください。
42 数学Ⅰ 第2章● 2次関数
(ii) a<b<0 のとき, y=x" の最大値はα,
最小値は62であるから,
a²=5, 6²=2
条件a<b<0 より,
a= -√5, b= -√2
y
-√5-√2
15
xC
□133 関数 y=xのa≦x≦bにおける最大値が5, 最小値が2であるとき定
数 a b の値を求めよ。
oy=
□134 1辺の長さが4の正方形 ABCD において, 点P
は点Aを出発して点Dに向かい毎秒1の速さで
動き, 点Qは点Aを出発して点Bを通り点Cに
向かい毎秒2の速さで動く。 x秒後に,この正方
形が直線PQによって仕切られる部分のうちA
を含む側の図形の面積をyとする。 このとき, y
他
A→P
Q!
D
-3 または
0-3
133 最小値が2であるから. a≦x≦b は0を含んでいない!
したがって,0<a<b または a<b<0であ る。
(i) 0<a<bのとき, y=x" の最大値は6,
最小値は ² であるから,
b2=5^2=2
条件 0<a<bより
a=√2.6=√5
0 √2√5 x
y=x²のグラフをイメージ
して
みる。
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8922
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6070
51
数学ⅠA公式集
5642
19