Mathematics
高中
已解決
なぜ、6(x−3)のところで3が出てくるのでしょうか?
この3は、どこから来ているのでしょうか?💭✨
教えて下さい💦
指計 1次不等式の活用 用意した長いすの個数をx脚として,条件からxの不等
8、ある説明会で、参加者用に長いすを何脚か用意した。1つの長いすに
人で座ると29 人が座れないことがわかったので,1つの長いすに6人
教科書 .57~58
p5
こ
の説明会の参加者の人数として考えられる値をすべて求めよ。
式を作る。
解 用意した長いすの個数をx脚とするとき,参加者の人数は
4x+29(人)
1つの長いすに6人で座るとき,使わない長いすがちょうど2脚あるから
6(x-3)<4x+29%6(x-2)
6(x-3)<4x+29 から
2x<47
まく=23.5
よって
4x+29S6(x-2)から
-2xS-41
41
=20.5
よって
のとのの共通範囲を求めて
20.5Sx<23.5
xは自然数であるから
20.5
23.5
*=21, 22, 23
このとき 4x+29=113, 117, 121
したがって,説明会の参加者の人数として考えられる値は
113, 117, 121
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6083
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24
わかりやすく説明していただきありがとうございました🌷✨