Mathematics
國中

(1)の②と③の解説中に出てくる、
4✖️5分の4 や 5分の4✖️2xの
5分の4とは、どこから出てきたものですか?
右下に書いてある比を使った求め方はできるのですが
このやり方がよく分かりません。
教えてください🙇‍♀️🙇‍♀️

やってみよう! 応用問題 動く点と立体の体積 関数 y%3arと一次関数 (福井) 図のように、AB=5cm, AD=3 cm, AE=4cmの直方体がある。 点Pは, 頂点Aを出発して、対角線 AH.辺 HG. GF, FE, EA上をA→H →G→F→E→Aの順に毎秒2cmの速さで動き、頂点Aに達したところで停止する。 点Qは、頂点Aを出発して, 辺AB, BC上を, A→B→C→Bの順に毎秒1cm の速さで動き,点Pが停止すると同時に停止する。2点P, Qが同時に頂点Aを 出発し、出発してからェ秒後の三角錐 PDAQ の体積をy cm'とする。ただし, エ=0 のとき,y=0 とする。 このとき,次の問いに答えよ。 (1) 点Pが対角線 AH上にあるとき, H E \ c 6 D A 0 xの変域を求めよ。 三平方の定理より, AH=V4°+3° =\25 =5(cm) AD=3, DH=4で, ZADH=90°だから, 5 0SxS 2 の 点Pは毎秒2cmで進むから, AH 間は一秒で通過する。 2 x=2のときのyの値を求めよ。 AP=4 AQ=2 点Pの辺 ADからの高さは, 4×=D (cm) 5 2 16 2 y= 16 5 5 1 よって, y= 16 -×3×2×- 5 4 2 16 3 y= 5 5 3 yをェの式で表せ。ADAQを底面とすると,高さは一×2.r=x 8 2の変域 よって、リ=××3×x×ォ= 8 -エ 5 2 5 5 <xS5 (2) 点Pが辺HG上にあるとき, エの変域を求めよ。また,そのときのyをェの 式で表せ。AG間は 10 cmだから, 点Pは5秒後にGに達する。 このとき,点Qは辺 AB上にあり, ADAQ を底面とする三角錐 PDAQ リ= 2.c 1 -×3×ェX4=2c の高さは, DH=4 よって, y=×。 (3) 5SrS9のとき, zの値に関係なく,yの値は一定になることを言葉や数、 51 5, 秒後 5 式などを使って説明せよ。 (説明)(例) 三角錐 PDAQの底面を△DAQ とみると, 占Pは辺 GF,辺 FE上を動くので,三角錐誰の高さは 4(cm)で一定である。また,点Qは辺 BC上を動くので、 (1)0 AADH は辺の比が 3:4:5直角三角形。 2 PからADに垂線PI をひくと,PI: HD= ×3×5= (cm)で一定である。 した 15 AP:AH PI:434:5 2 15 X43D10om3\- 2 より、PI= 16 %D -(cm) ふくって 1はーx 5

解答

尚無回答

您的問題解決了嗎?