Mathematics
มัธยมปลาย
เคลียร์แล้ว

数学的帰納法について質問です。
マーカー部分、なぜ急に不等式が出てきているのか、またマーカー部分は何より小さいのか全くわからないです。

解説していただきたいです。よろしくおねがいします。

準 nを3以上の自然数とするとき, 不等式 4"> 8n+1 CHART (A)を証明せよ。 すべての≧で成り立つことの証明 GUIDE HART [1] 出発点 n= のときを証明 生 [2]n=k(k≧) のときを仮定し, n=k+1のときを証明 本問では「n≧3 のとき」という条件であるから,まず,n=3のとき不等式が成り立つ ことを証明する。なお、n=k+1のとき示すべき不等式は 4'+'>8(k+1)+1である。 不等式A>B を示す代わりに A-B>0 を示す。 |答 [1] n=3のとき (左辺) =4=64, (右辺) =8・3+1=25 よって, n=3のとき, (A)が成り立つ。 [2] k≧3 として, n=k のとき (A) が成り立つ,すなわち 4k8k+1 川 <64>2503 「3」を忘れずに。 が成り立つと仮定する。 n=k+1のときの(A) の両辺の差を考えると 4+1_{8(k+1)+1}=4・4-(8k+9) 48+1)-(8k+9) =24k-5>0 ← k≧3から。 すなわち 4k+1 > 8(k+1)+1 よって, n=k+1 のときも (A) が成り立つ。 ◆ここで上の仮定 4>8k+1 を活用。 40 であるから 4>8k+1 ) の両辺に4を掛けても、 [1], [2] から, 3以上のすべての自然数nについて(A)が成り不等号の向きは変わらな 立つ。 Lecture 出発点を変えた数学的帰納法大 「nが自然数のとき」ではなく、 「n≧m のとき」のような, ある特定の数以上のすべての自 然数について成り立つことを証明するには,出発点を変えた数学的帰納法を利用する。 その手順 は、次の通りである。 の場合、例題 26 での数学的帰納法。 [1] n=m のときを示す。 ←m=1の場合が, [2]n=k(ただし, k≧m) のときを仮定して, n=k+1 のときを示す。 注意 上の例題で n=1, 2 のとき, 4”は順に4, 16, 8n+1は順に 9, 17であり, 4">8n+1 は成り立たない。よって,機械的に「n=1 のとき,不等式は成り立つ。」など と答案に書かないようにしよう。
数列 数学的帰納法

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

急じゃないです
示したいものも不等式、
[1]も不等式、[2]の仮定も不等式です

不等号は、その直前と直後の大小を示します
マーカー部はもちろんその直前の式より小さいのです

いま何を示している途中なのかを強く意識してください

ロン

返信遅くなってしまって申し訳ありません。
大小関係を示せばよかったんですね、、!よくわかりました!ありがとうございます😊

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉