Mathematics
มัธยมต้น

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 特講 例題 121 ガウス記号を含む方程式 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1)[2x] = 3 (2) [3x-1] = 2x (3) [2x]-[x] = 3 ★★★☆ (1),(2)はガウス記号が1つ [x]=nのとき n≦x<n+1 として外す fic Action ガウス記号は,n≦x<n+1 のとき [x] = n として外せ 例題120 (3)はガウス記号が2つ 場合に分ける [x] => -1 [2x] 48217=2 幅1ごとに値が変わる 一般にこの部分で考えてみる 3 1 2 n 4/1/2n+1 幅 ごとに値が変わる (ア)(イ) 思考プロセス 3 2章 2次関数と2次不等式 (1)[2x] =3より,3≦2x <4であるから 32 (2)[3x-1] = 2x. ① より, 2x は整数である。 ①より 2x3x-1 <2x+1 ≦x<2 。 これを解くと 1≦x<2 4 22x4 であり, 2x は整数より 2x=2,3 3 よって x=1, 2 (3) [2x]-[x] = 3 ・② とする。 方程式の解は,不等式で 表される範囲になる。 [3x-1] は整数である から 2xも整数になる。 2x3x-1 より x≧1 |3x-1<2x+1 より x<2 (ア) n≦x<n+ 1/2(nは整数)のとき 2n≦2x<2n+1 であるから [2x] = 2n また,[x] = n であるから,②は2n-n=3 よって n=3 ゆえに 3≦x< x</ xを幅 1/2で場合分けす る。 (イ) n+ 12/2≦x<n+1(nは整数)のとき 2n+1≦2x<2n+2 であるから [2x]=2n+1 また,[x] = nであるから,②は (2n+1)=3 よって n=2 5 ゆえに ≦x<3 2 5 (ア)(イ)より ≤x< 2 2 121 次の方程式を解け。ただし、[x]はxを超えない最大の整数を表す。 (1) [3x] =1 (2) 2x=[√5] (3) [2x+1]=3x (4) [3x]-[x]=1 217 222

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉