Mathematics
มัธยมปลาย
เคลียร์แล้ว

この問題のエオについて質問です。なぜ cosもsinも0になるのでしょうか?上で表記されているから、というのは分かるのですがなぜ1🟰...となるか分かりません。。
zの0は1という所から来てるのでしょうか、?

解説お願いします🙏

素数平面 22 複素数のn nn 例題 2 i を虚数単位とする。 と表すことができる。 両辺の絶対値と偏角を比較すると, +isin の右辺も極形式で表すと、③は,ア (cos イ 0+isin ウ 0) =cosエ (1) 方程式 = 1...... Aを解く。 zの極形式をz=r(cos0+isin0) とし, 方程式 r= カ0= kπ キ (k は整数) ...... (*) π コ を得る。 0≦02の範囲で (*) の0の値は, 0=ク π、 ケ サ 以上により, 方程式の解は、シ i,スセ -i である。 (2)方程式 28i®を解く。 zの極形式をz=r(cos0+isin0) とし、方程式®の 右辺も極形式で表すと,Bは, ツ , (cos夕 0+isinチ8)=ツ (cos +isin- π π テ ト と表すことができる。 両辺の絶対値と偏角を比較すると, (k+1) r=ナ 0 = (k は整数)...... (**) ヌ を得る。 0≦02の範囲で (**) の0の値は, TC 0 = π, ネ ハ ヒ フ ヒ ただし < π ハ 以上により, 方程式の解は, < +i. ホ +i, マミiである。 解答解説 (1)zの極形式をz=r(cos0+isin0) とすると, ドモアブルの定理により, z4=r* (cos40+isin40)A 方程式Aの右辺を極形式で表すと, 1=cos0+isin 0 A B よって, 方程式 A は次のようになる。 r4 (cos40+isin40)=cos0+isin0 A ......ア, イ ウ エ オ (答) ここで、両辺の絶対値と偏角を比較すると, =1,40=0+2k(kは整数) C 数学6 THE A 鉄則 (複素数)” は,極形式で表 してド・モアブルの定理 2” を考えるときは,まずz = a+bi を 極形式 (cos0+isin0 ) で表す。 本間は, 方程式A,Bの両辺を ともに極形式で表すことがポイントだ そのあと,ド・モアブルの定理を使う。 ドモアブルの定理 z=cos0+isin のとき z"=cosn0+isinn は整数

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

Z^4=1 の方程式を解きたい問題ですよね。
Z^4を極形式で表し終えてますから(r^4(cos4θ+isin4θ))
次は1を極形式で表したいわけです。
1を極形式で表すと、cosθ=1, sinθ=0となるθの値を考えれば良くて、θ=0で表す事ができます。
つまり1=cos0+isin0

そして最後にz^4を表す極形式と1を表す極形式(2つの極形式は等しいので)の絶対値と偏角を比較すると、方程式が解けちゃうよ、という問題です!

🐱 ※プロフィール見て欲しいです🙇‍♀️

理解出来ました!ありがとうございました!
分かりやすかったのでベスアンに選ばさせていただきます!

แสดงความคิดเห็น

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉