Mathematics
มัธยมปลาย

(1)のとき、イコール記号を切り離して3つの方程式を答えとしても正解ですか?

ペー 3空間のベクトルの応用 例題 C1.66 直線の方程式 (1) (315) C1-129 次の条件を満たす直線の方程式を求めよ. (2) 2点A(2,2,-3), B(5, 2, 2) を通る直線 (1) 点A(0, 1, -2) を通り, d=1,2,3) 平行な直線 (3)点A(2,1,0) を通り, d=(0, 0, -1) に平行な直線 考え方 直線の式を求める際は, 「解答 ①p=a+td (1点A(a) を通り,方向ベクトルの直線) ②p=a+t(b-a) (2点A(a),B(b)を通る直線) を利用する.(②で b-a=d とおくと, ①と同じ式になる.) (1)A(7) とし,求める直線上の点をP(D) とすると, p=a+td (tは実数) だから,P(x,y,z) とすると, (x,y,z) = 0,1,-2)+t(1,2,3) **** x= =(t,1+2t,-2-3t) (tは実数) よって、求める方程式は, tを消去して y-1_z+2 2 (2)A(2,2,-3) を通り,方向ベクトルが AB= (3,0.5)の直線だから (x,y,z) = (2,2,-3)+t(305) =(2+3t,2,-3+5t) (tは実数) よって、求める方程式は を消去して, x-2_z+3 35,y=2平 (3)点A(2,1,0)を通り, 方向ベクトルが (0, 0, -1) の直線だから分 4-1-2-1 (x,y,z)=(2,1,0)+t(0,0, -1) (2,1,-t(tは実数) よって、求める方程式は, x=2,y=1 炭火&取沢 標準形という. AB =(5-2, 2-2, 2+3) =(3, 0, 5) より, 点Aを通り, AB に平行な直線と 考えればよい. 1 y 2人 xx zは任意の実数 第4章 Focus 空間における直線は, ベクトル方程式p=a+td (tは実数) を 用いて表す 注)(2)では,方向ベクトルの成分は0より、この直線上の点のy座標はつねに2(一定値) である.(3)では,方向ベクトルのxy成分はともに0より, この直線上の点のxy 座標はつねに x=2,y=1(一定値)であり、座標は任意の実数値をとる。 ●から成っている。 練習 次の条件を満たす直線の方程式を求めよ. C1.66 (1) 点A(2,-1, 3) を通り (2,16)に平行な直線 ** (2) 2点A(1, 2, 3), B(4, 3, -1) を通る直線 - (3) 点A(7, 2, 8) を通り、x軸に平行な直線 B1 58.13 B2 C1 C2

คำตอบ

tを残して答えるということですか?
この場合、あまりそういう答え方はしないと思います

ひー

tを消去してです。
2x=y-1とかです。3つイコールで繋げるような答え方をあまりしたことがなかったので、違和感がありまして。

むしろ、私は空間における直線の方程式は
●=●=●の形しか見たことがありません
これが普通ではあります

ひー

意味がわかりました!ありがとうございます🙇‍♀️

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉