Mathematics
มัธยมปลาย

数列の問題です。
右の方が解答なのですが、矢印の所が理解できません。
教えてください🙇‍♀️

第7群の末項は,左から数えて 2 からの等 1.2-2(2n-1 7 -2"(2n-1) 2* = 2(27-1) k=1 2-1 254 (番目) ゆえに 98 チャート 173 (1) 次の和を求めよ。 1 min+2+√m n *(2) 和S=Σ2-1(2k-1)nの式で表せ。 k=1 (3)公比2, 初項1の等比数列{an}に対し,和 (n-1) よって, 第8群の最初の数は、数列{a}の第 177 (1) 255項であるから 3 [ 22 愛媛大〕 a255- ・255+ AD 228 11 2 よって =-377 [19 京都産大〕 また,-5000のとき 12/1+1/12/2 3 以下同 て 2"+-5000 1 したがって, + + + a₁ a2 a3 を求め これを解くとn≧3337 a 3337 an+1= が第何群に含まれるかが分か an an ればよい。 よ。 また, 和 10gza1+10g2a2+ +10gzan を求めよ。 [06 立教大〕 第k群(k≧2) の初項は左から数えて bm= k-1 2m+1=- 2(2-1-1) 2-1 +1=2-1 (番目) ゆえ m=1 174 初項 7, 公差2である等差数列 {an} について, 次の問いに答えよ。 (1) 一般項an を求めよ。 よって, 3337 が第k群(k≧2)に含まれるとする と 2-133372k+1-1 また (2)初項から第n項までの和 Sm を求めよ。 +loga (3) 数列{6}の階差数列が {a} であるとする。 b1=1のとき, 数列{bm}の一般 項を求めよ。 ..... +10g22 - 1 〔20 岡山理科大 ] = n(n−1) n- *175 第3項が1, 初項から第8項までの和が10の等差数列 {a} がある。 (1){a} の初項は 公差はである。 +5 +5)=(n+6) 211-1=2047,21214095であるから,これを 満たす自然数 kはk=11 したがって,-5000 以下の数が初めて現れるの は第11群である。 176 (ア) -5n+6 (イ) -2 +1 (ウ) 1/12m(n-1)(4n+7)(エ)2(オ)4(カ) 5 (キ) 4.5-1+2 (2) し等 した 等 b ゆ (2) {a} を次のような群に分け, 第k群には2個の数が入るようにする。 aazlas 第1群 as as la as as a10 a4 第2群 a11 a12 第3群 a13 a 14. =1+(n-1)n+5) このとき, 第8群の最初の数はである。また,-5000 以下の数が初めて (1){a} は初項1, 公差 -5の等差数列であ るから a=1+(n-1)・(-5)=アー5n+6 また,(67)は初項-4 公比2の等比数列である から b=-4.2"1-2"+1 C 現れるのは第群である。 〔22 青山学院大〕 (2) 漸化式から an+1-a=2n2+3n よって, {a} の階差数列 (6) は bm=2n2+3m

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉