Mathematics
มัธยมปลาย
เคลียร์แล้ว

赤戦で囲った部分

どうしてπ/2を代入するのか分からないです

+1) 求めよ。 1. 基本 65 では 3)', 74 第2次導関数と等式 v=log(1+cosx) のとき,等式 y” +2e-x=0を証明せよ。 ((1) y= (2) y=esinx に対して, y" = ay+by' となるような実数の定数 α, bの値を求 2x, めよ。 指針 第2次導関数y" を求めるには,まず導関数yを求める。 また, (1), (2) の等式はとも にの恒等式である。 [(1) 信州大, (2) 駒澤大] 基本73 解答 例題 基本的 (1)y" を求めて証明したい式の左辺に代入する。 e xで表すには、等式 elogp=カを利用する。 (2)y',y" を求めて与式に代入し, 数値代入法を用いる。 なお,係数比較法を利用す → ることもできる。 →解答編 p.94 の検討 参照。 (1) y=2log(1+cosx) であるから (1+cos x)' y'=2. 1+cosx 2{cos x(1+cos x)-sinx(-sinx)} (1+cos x)² 32 1+cos x よって y"= 2(1+cosx) (1+cos x)² また, //=log(1+cosx) であるからex=1+cosx 2 ゆえに 1+cosx 2e = 2 est y" +2e=2=-- = また, x= 2 2 よって 1+cosx 1+cosx (2) y'=2e²x sinx+e²x cos x=e²x (2 sinx+cosx) y”=2e2(2sinx+cosx)+e2(2cosx-sinx) 2sinx 1+cosx =e2x(3sinx+4cosx) ゆえに ay+by' = aesinx+be2x (2sinx+cosx) ...... + を代入して ① =e2x{(a+26)sinx+bcosx} =0 y" = ay+by に ① ② を代入して e2x (3sinx + 4cosx)=e^x{(a+2b)sinx+bcosx} ③はxの恒等式であるから, x=0を代入して π 3e=e¹(a+2b) (3) 4=b ... <log M = klog M なお, -1≦cosx≦1と (真数)>0 から 1+cosx>0 Az el sin²x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 4(e2*)(2sinx+cosx) +ex (2 sinx+cos.x)' 131 【参考】 (2) のy"=ay+by のように、未知の関数の 導関数を含む等式を微分 方程式という (詳しくは p.353 参照)。 1③が恒等式③に x=0,177 を代入しても 成り立つ。 これを解いて a=-5,6=4 このとき (③の右辺) =e2x{(-5+2・4)sinx+4cosx}=(③の左辺)逆の確認。 したがって a=-5, 6=4 2017AB DE 2 [9] JO (1) y=log(x+√x+1)のとき,等式(x+1)y"+xy'=0 を証明せよ。 ③74 (2) y=e2x+exy"+ay' + by = 0 を満たすとき,定数a, bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大】 p.139 EX67~69 3章 ⑩ 高次導関数関数のいろいろな表し方と導関数 11

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

π/2ってsinだと1でcosだと0なので計算しやすいからです。
式は恒等式なのでxの値はなんでも構いません

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉