Mathematics
มัธยมปลาย

(2)で外角の二等分線をB側に引いてしまったんですがそれだと答えが合わなくて、なんでC側に引いてるんですか?

基本例題 59 三角形の角の二等分線と比 (1) AB=3,BC=4,CA=6である△ABCにおいて, ∠Aの外角の二等 一 (2) AB=4,BC=3,CA=2 である△ABCにおいて,∠A およびそのター 線が直線 BC と交わる点をDとする。 線分BD の長さを求めよ。 の二等分線が直線BC と交わる点を, それぞれD, E とする。 線分 DE p.325 基本事項 ② 長さを求めよ。 CORRE CHARTO SOLUTION は1点で変わる。その点を 三角形の角の二等分線によってできる線分比 (線分比)=(三角形の2辺の比) . その三角形 内角の二等分線による線分比 内分 外角の二等分線による線分比 外分 =2A+BA 各辺の大小関係を,できるだけ正確に図にかいて考える。 3200 解答 (1) 点Dは辺BC を AB : AC に外分するから AB:AC=1:2 であるから BD: DC=1:2 よって ゆえに よって → BD:DC=AB:AC1+この BD=BC=4 THERESA (2) 点Dは辺BC を AB: AC に内分するから BD: DC=AB:AC=2:1 -XBC=1 (5) D ゆえに DC= 2+1 また, 点Eは辺BC を AB: AC に外分するから BE: EC=AB:AC=2:1 CE=BC=3 A DE=DC+CE=1+3=4 B MAHA DC ◆ AB:AC=3:6 18+HA) ← BD : DC=1:2 か BD: BC=1:1 'E AB:AC=4:2 ZO 1645 S-A31-08 A-8A PRACTICE・・・・・ 59② (1) AB=8,BC=3,CA=6である△ABCにおいて, ∠Aの外角の二等分線が BCと交わる点をDとする。 線分 CDの長さを求めよ。 (2) △ABCにおいて, BC=5,CA=3,AB=7 とする。 ∠A およびその外角の 分線が直線BCと交わる点をそれぞれD, E とするとき, 線分 DE の長さを求ニ 〔(2) 埼玉工 CO DELA

คำตอบ

B側の二等分線てどんなのですか?
それは結局AEと同じものになるはずですが…

できれば図で教えてください

ccc

見にくくてすいません。

その∠BAEはどういう大きさですか?
何を基準にAEを引きましたか?
この辺がおかしいです

∠BACが内角なのに対して、
その隣にある180°-∠BACの大きさの角が
Aの外角です
それを2等分するように引かないとダメです

で、その図だと引きにくいと思います
それは、△ABCが本物と違うからです
長さ4,3,2の三角形は、
模範解答のような鈍角三角形です
これをある程度正確に描かないと、わからなくなってきます

ccc

外角の二等分線の引き方がしっかり理解出来ていませんでした、、仮に正しく書けば求められるということですか?

三角形がそれなりに正しければ、正しく描けます

ccc

分かりやすくご説明いただきありがとうございました!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉