Mathematics
มัธยมปลาย

どうしてこれをすると答えが導けるのか教えてください。

よろしくお願いします

のようなm 思考プロセス 259 に含まれる素因数の個数 0② ★★★ n! 708**** 求めよ。 (1) 15! = 1・2・3・・・・・ が で割り切れるような自然数の最大値を (2) 55=1・2・3・・・・・55 は一の位から数えて末尾にいくつ0が続く整数か。 問題の言い換え 15!は2で最大回割り切れる。 kを求めよ。 15 に含まれる因数2の個数kを求めよ。 (2) 55! に含まれる因数 10 の個数を求めよ。 2 × 5 でも 10 が現れるから,単純に10,20,30,40,50の5個としてはいけない。 例1~5に10の倍数はないが 5! 1・2・3・4・5 = 120 公 10/118 Action>> 末尾に続く0の個数は,素因数分解したときの2.5の指数に着目せよ (1) 1から15までの自然数の中に 2の倍数は 21, 22, 2.3,・・・ 2・7 7個 4の倍数は 41 42 43 8の倍数は8・1 よって, 15! に含まれる因数2の個数は 7+3+1 = 11(個) k=11 信用 したがって 求める自然数の最大値は (2) 求める0の個数は 55! に含まれる因数 10の個数に等し い。 さらに, 102・5 であり, 55! に含まれる因数5の 個数は因数2の個数より少ないから、因数 10 の個数は 因数5の個数に等しい。 ここで、1から55 までの自然数の中に 5の倍数は5・15・25・3・・・ 5・11の11個 25の倍数は 25 125・2 の2個 よって, 55! に含まれる因数5の個数は11+2 = 13 (個) したがって、求める 0の個数も 13個 Point....n! に含まれる素因数 p の個数 2の倍数 22の倍数 2の倍数 1 2 O 3 4 00 例題 259 (1) において, 15! に含まれる素因数2の個数は、下の表をつくると分かりやすい。 9 10 11 12 13 14 15 O O O 10 5 6 7 O O 8 OOO の3個 の1個 ○ 末尾に0がある 200 2 22,23の倍数の個数 をそれぞれ求める。 2,22, 23の倍数の個数 の総和が, 15! に含まれる 「因数2の個数である。 Point 参照。 1から55までの自然数の うち, 5の倍数より2の倍 数の個数が多い。 259 (1) 20! が3で割り切れるような自然数kの最大値を求めよ。 (2) 150! 一の位から数えて末尾にいくつ0が続く整数か。 55! に含まれる因数5の 個数を求める。 p.477 問題259 457

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉