Civil service examination
มหาวิทยาลัย
เคลียร์แล้ว

わかる方教えてください。

10 A~Dの4人が1度ずつ対戦する総当たりの囲碁のリーグ戦を行う。 A~Dのうち1人 が3勝0敗、他の3人が1勝2敗である場合は何通りあるか。 1.4通り 2.8通り 3. 12通り 4.16通り 5.20 通り

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

3勝した人がAだったとしましょう。
以下、対戦成績を表で表すことにします(○が勝ち、●が負けを表す)。
  A B C D
A ー ○ ○ ○
B ● ー 
C ●   ー
D ●     ー
残りの3人は1勝2敗です。
Bは1勝2敗なので、CとDのどちらかには勝ち、もう一方には負けたことになります。
すなわち、「Cに勝ってDに負けた」か「Cに負けてDに勝った」かです。
Cに勝ってDに負けたなら、
  A B C D
A ー ○ ○ ○
B ● ー ○ ●
C ● ● ー  
D ● ○   ー
となり、さらにCも1勝2敗なので
  A B C D
A ー ○ ○ ○
B ● ー ○ ●
C ● ● ー ○
D ● ○ ● ー
と全ての勝敗が決まります(これで1通り)。
逆にCに負けてDに勝ったなら、同じようにして
  A B C D
A ー ○ ○ ○
B ● ー ● ○
C ● ○ ー ●
D ● ● ○ ー
と全ての勝敗が決まります(これでもう1通り)。
以上より、Aが3勝した場合、勝敗の場合の数は2通りです。
同様にしてB、C、Dが3勝した場合も、それぞれ2通りなので、
求める場合の数は 2×4=8通り です。

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉