Mathematics
มัธยมต้น
เคลียร์แล้ว

この証明の解き方教えて欲しいです🙇
また、何故BD+CE=DEになるかも教えて欲しいです

問題 右の図のように, 直角二等辺三角形 ABC の直角の頂点Aを 通る直線に頂点 B, Cからそれぞれ垂線 BD, CEをひく。 このとき,次の問いに答えなさい。 (1)△ABD=△CAE であることを証明しなさい。 E B C

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

こんな感じでどうでしょうか。

∠BAD=∠CAD-∠CAB=(∠ACE+∠CEA)-90°
=∠ACE+90°-90°=∠ACE
これと題の条件より直角三角形の合同条件を満たしますよね。

△ABD≡△CAEより
AE=BD,DA=CE
DE=DA+AE=BD+CE

ぱんた

ありがとうございます!!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉