学年

質問の種類

理科 中学生

(2)が解説みてもわかりません 親指👍️のやつつかうんですか??

2 電流のまわりの磁界を調べよう 実験 電流がつくる磁界 図1の装置を組み立て、白紙の上に鉄粉をま 導線に電流を流して板を軽くたたき、鉄 粉の並び方の変化を観察する。 図 1 図2 白紙 (5) 鉄粉を回収し、図2のように導線のまわりに 方位磁針を置く。 導線に電流を流し、磁界の 向きを調べる。 電流の向きを変えて、磁界の向きを調べる。 図3のように、電流が流れている導線から方 位磁針を遠ざけていき、針(N極)がさす向き の変化を調べる。 電流の 向き エナメル線を 巻いたもの カ 図3 |電流の向き 方位磁針を遠ざけたまま, 電流を大きくして いき針 (N極)がさす向きの変化を調べる。 キャ N極 電流の 向き 北 (1)で,鉄粉は導線を中心にどのような形に並びますか。 ②で、図2の矢印の向きに電流が流れるようにしたとき,方位磁 針AのN極は,ア~エのどの向きをさしますか。 (3)③で、電流の向きを変えると磁界の向きはどうなりますか。 (4)(3)から、まっすぐな導線を流れる電流がつくる磁界の向きは,何 によって決まるといえますか。 (5)④で、導線から方位磁針を遠ざけていくと, N極はしだいにどの 方角をさすようになりますか。 東・西・南北で答えなさい。 2 解答 p.65 (1) (2) (3) (4) (5) (6), 方位磁針を遠ざけたまま電流を大きくしたとき, N極がさ す向きが変わりました。 その向きを,図3のカケから選びなさい。 (6) きょり (7)(5)(6)から、導線を流れる電流がつくる磁界が強いのは,① 電流 の大きさ, ②電流からの距離がどのようなときだといえますか。 (7) ① ア (8) 左の図で,コイルの内側の磁界の向き は,アイのどちらの向きになりますか。 ② 電流の向き コイル |の軸 (9) 左の図で、電流の向きを逆にすると コイルの中の磁界の向きは, アイのど ちらの向きになりますか。 (8) (9) 重要用語> 磁力 □磁界 磁界の向き 磁力線

解決済み 回答数: 2
数学 高校生

黄色いところは何をやっているのか分かりません。。(;;)教えて欲しいです!

重要 例題 160 媒介変数表示の曲線と面積(2) 媒介変数によって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 YA x 基本156 CHART & SOLUTION 基本例題156では,tの変化に伴ってxは常に増加したが, この問題ではの変化が単調でないところがある。 y Y2 右の図のように, t=0 のときの点を A, x座標が最大とな る点を B(t=to で x 座標が最大になるとする), t=πのと きの点をCとする。 S B A -3 O 1₁ x Xo この問題では点Bを境目としてxが増加から減少に変わり, 軸方向について見たときに曲線が往復する区間がある。 したがって, 曲線AB を y, 曲線 BC を y2 とすると,求め る面積Sは t=π t=0 ●t=to 曲線が往復 している区間 s=Sydx-Sy yidx と表される。 よって、xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式を立てる。 また,定積分の計算は、置換積分法によりxの積分からtの積分に直して計算するとよい。 解答 図から, 0≦t≦↑ では常に y≥0 また y=2sint-sin2t=2sint-2sintcost =2sint(1-costするど よって, y=0 とすると sint=0 または cost=1 24 0≤t≤ x 5 t=0,0-(D)\\ 次に, x=2cost-cos 2t から 7 dx =-2sint+2sin2t dt xh (bala-nia) Daia inf. 0≤ts D sint≧0, cost ≦1 から y=2sint(1-cost)≧0 としても,y≧0 がわかる。 455-25 =-2sint+2(2sintcost)_(n)\ =2sint(2cost-1) 0<t<πにおいて dx dt -= 0 とすると, sint>0 で あるから π t 0 π |3| cost= 201 ゆえに dx t= J3 dt + よって、xの値の増減は右の表のようになる。 x 1 →>>> 032 ↑ P -3

解決済み 回答数: 1
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
1/7