学年

質問の種類

英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
数学 高校生

(2)⑭についての質問です。 答えがわかっていたので、答えに合わせるように計算を行いました。 その時の計算式で Xの分散を小数第5位(0.81142)まで書いて計算しないといけない理由が分かりません。 教えて欲しいです。

例題2 [データの変換] 3 かし 温度の単位として, 損氏(℃)のほかに華氏 (°F)があり、℃とが同 じ温度を表すときのxとの関係は,,v=1.8c+32であることが知られて いる。 日本のある都市において, 1週間の最高気温を測定したデータが次の表 のようであった。 このとき、 次の値を求めよ。 ただし, 平均値は四捨五入 して小数第1位まで, 分散は四捨五入して小数第2位まで求めよ。 最高気温(℃) 8.5 9.2 10.8 8.2 日 月 火 水 木 金 土 8.7 7.9 8.3 (1) 最高気温の平均値と分散 ヒント 共分 Sky の偏差をgの偏差の 私の平均値 (2) 華氏 (°F) で表したときの最高気温の平均値と分散 解答 r= Sty Sx3y (1) 最高気温を表す変量を℃とすると, xの平均値は IC == // (8.5+9.2+10.8+8.2+8.7+7.9+8.3)=Dg.8 (℃) であるから, x-xと (x-x)の値は下の表のようになる。 8.5 9.2 10.8 8.2 8.7 ◆平均値 =(エエエッ 7.9 8.3 x-x -0.3 0.4 2.0 -0.6 ② -0.9 3 (xx) 20.09 0.16 4.00 0.36 ④ 0.81 5 分散 s よって,x の分散szは,s2=1/2x65,68 S = 00.8114285.7.... ²= {(x1−x)²+(x2-x)² n より, 四捨五入すると,08 +…+(x_x)}} (2) 華氏で表したときの最高気温の変量を°Fとすると, xとyに y=1.8c+32の関係があるから, yの平均値y は 9 y= 1-8 +1032 147-84 (°F) y=ax+bのとき 98.8 y=ax+b より、四捨五入すると, 華氏で表したときの平均値は,1247.8 F また,yの分散 sy2は 2 13 1.8 Xs2=14 より、四捨五入すると、華氏で表したときの分散は12,63 y=ax+bのとき s₁²=a²s₁² →1.8×1.8×0.81142 = 2.6290- 類題2 次の変量xのデータについて, u=- 2 変量をuとする。 x-50 とおいて得られる新しい x:64 52 54 77 60 68 57 65 59 74 次の値を求めよ。 ただし, 必要であれば, 61=7.8 として計算せよ。 (1)の平均値と標準偏差 (2)の平均値と標準偏差 例題2の答 1 8.8 2 -0.1 (30.54 0.01 15 0.25 65.68 70.811... 8 0.81 9 1.8 10 32 11 47.84 12 47.8 13 1.8 14 2.629・・・ 15 2.63 145

未解決 回答数: 1
1/50