学年

質問の種類

数学 高校生

Focus gold 例題89 なぜこの解き方が間違っているのかがわかりません

4 第3章 図形と方程式 Think 立 **** 例題 89 弦の長さ(1) 直線 y=2x+2...... ① が円 x + y' =8...... ② によって切り取られて 解答 円 ②の中心 (0,0) と直線①の距離は, |2| |2| 2 できる弦の長さを求めよ. 考え方 図に描いて考える 円の中心と弦の距離を求めて、三平方の定理を利用する y=2x+2 より 2x-y+2=0 =- √2+(-1)^√55 2√2 2√2 求める弦の長さを2ℓ とすると,円の 2√2 2ℓ とおくのがポイ ント 半径が22より X e+(1/5)=(2/2) 36 e2. 5 6√5 I+ l>0より, l=- 5 12/5 よって、弦の長さ2ℓ は, 5 (別解) ①を②に代入して, x2+(2x+2)2=8 (B, 2B+2) 5x2+8x-4=0 .....③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (22) とす x ると,α βは2次方程式 ③ (a,2a+2) の2つの解だから,解と係数の関係より、 8=2√√2 ) 2 三平方の定理 求める長さは2ℓで あることを忘れずに 解と係数の関係を利 使用する解法 2.85% ax2+bx+c=0 の 2つの解をα βと 8 +B=- aß= 求める弦の長さを l とすると, l°=(β-a)'+{(2β+2)-(2x+2)}=5(β-α) 2 =5{(x+B-4aB)=5{(-2)-4(-1)}=141 すると b a+β=- aß= a a 三平方の定理 よって, l>0より,弦の長さは, 12/5 5+(1-8) Focus 弦の長さの問題は,円の中心から弦に垂線を引き、 三平方の定理を利用する l²+d²=r² >m> Think

解決済み 回答数: 1
化学 高校生

(4) 水が増加している分は足さなくて大丈夫なんですか?

[A]xt[s]の SC=A'sと判 る。 中では、次の変 っている。 →HCIO+HC C/mol である。 304.電池と電気分解 解答 (1) 電極A PbO2+4H++ SO² +2e- 電極D:2CI Cl2+2e- → PbSO +2H2O (2) 増加する。 +0.48g (3) 9.7×10秒 (4) 減少する, -0.80g 電極Cに銅が析出したので, 電極Cでは次の変化がおこっている。 とDは、塩化銅(Ⅱ) CuCl2 水溶液の電解槽の陽極または陰極である。 解説 (1) 電極AとBは鉛蓄電池の正極または負極であり、 電極C 電極C:Cu2+ +2e- Cu したがって、電極Cは陰極であることがわかり, 電極Dは陽極である。 電池の正極が接続された電極が陽極, 負極が接続された電極が陰極なの で、電極Aが鉛蓄電池の正極, 電極Bが負極となる。 電極A~Dの各変化は,次のように表される。 A: 正極 PbO2+4H++SO2 +2e B:負極 Pb+ SO- C: 陰極 Cu2++2e- D : 陽極2CI→ Cl2+2 PbSO4+2H2O ... PbSO4+2e- Cu ⑧HO (2) 電極Cに銅Cu (モル質量 64g/mol) が0.32g析出したので,この とき電解槽に流れた電子の物質量[mol] は,③式から,次のようになる。 0.32gx2=0.010mol 64 g/mol ②式から、鉛蓄電池の放電によって, 電極 B の Pb が PbSO4 に変化する ため、2molの電子が流れると,その質量はSO4 (モル質量 96g/mol)の 1mol に相当する 96g 増加する。 したがって, 0.010mol の電子が流れた とき、電極Bの質量の増加分は,次のように求められる。 96 g -×0.010mol=0.48g 2 mol (3) 電気分解で流れた電子は 0.010mol なので, その電気量は, ファラ デー定数から, 9.65×104C/mol×0.010mol=9.65×10°Cである。 流れ た電流が 0.10A なので、 電気分解を行った時間を f[s] とすると, 9.65×102C=0.10Axt[s] t=9.65×10s (4)鉛蓄電池の放電の前後で,電極 A,Bの質量変化から,溶液の質量 変化を考える。 (2) から, 放電の前後で電極 Bの質量は0.48g増加する。 また、①式から,放電によって、電極 A の PbO 2 が PbSO』に変化するた め, 2molの電子が流れると,その質量はSO2 (モル質量 64g/mol)の 1molに相当する64g増加する。 したがって, 0.010molの電子が流れた とき、電極Aの質量の増加分は,次のように求められる。 64g 2 mol -×0.010mol=0.32g 放電後の鉛蓄電池の両極の質量増加分は0.48g+0.32g = 0.80g となる ので 希硫酸の質量変化は0.80gの減少となる。 ① ① ② 式で生じた PbSO はそのまま電 に付着するため、 極板の 質量はいずれも増加する ②極板の質量増加分 液の質量減少分に相 る。

未解決 回答数: 0
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1
1/574