学年

質問の種類

物理 高校生

物理力学の質問です。 問2の式の右辺の成り立ちの意味がわからないため教えてください。

(14. センター追試 [物理Ⅰ] 改) ☆☆☆ 思考 判断 表現 13 摩擦のある水平面上の運動 5分 図のように、粗い水平な床 m F の上の点0に、質量mの小物体が静止している。この小物体に、 床と角度をなす矢印の向きに一定の大きさFの力を加えて、点 0から距離にある点Pまで床に沿って移動させた。小物体が点 Pに達した直後に力を加えることをやめたところ、 小物体はだけすべって、 点Qで静止した。ただ し、小物体と床の間の動摩擦係数をμ'′ 重力加速度の大きさをgとする。 問1点0から点Pまで動く間に、 小物体が床から受ける動摩擦力の大きさを表す式として正しいも のを、次の①~⑦のうちから一つ選べ。 ① μ'(mg+Fsin0) ②μmg-F'sin0) ③μ'(mg+Fcose) ④μ'(mg-Fcose) ⑤μ'(mg+F) ⑥μ'(mg-F) ⑦ μ'mg 小物体が点Pに到達したときの速さをfを用いて表す式として正しいものを、次の①~⑥のうち から一つ選べ。 「21(F+f) 21 (Fsin0+f) 21(Fcose+f) ① (2) ③ m m m 21(F-f) 21(Fsine-f) 21(Fcose-f) ④ ⑤ ⑥ m m m 問3 小物体が動き始めてから点Qに到達するまで、 点0と小物体との距離を時間の関数として表した グラフとして最も適当なものを、次の①~④のうちから一つ選べ。 さい a 距離 ① 距離 ② 距離 距離 ④ 1+1'1 1+1'1 1+1'1 1+1' 301 1 I 時間 時間 時間 時間 ( 13. センター本試 [物理Ⅰ] 改)

未解決 回答数: 1
数学 高校生

(2)がどういう原理で変形されているのか教えて欲しいです🙇‍♀️

早 唯 Think 例題 206 反復試行 (6) 最大確率 **** 1個のさいころを13回続けて投げるとき、6の目が回出る確率を Ph とする.このとき,次の問いに答えよ.ただし,0≦k≦13 とする. (1) Pk, Pk+1 の式で表せ. (2) Pkが最大であるkの値を求めよ. 考え方 (2) Pk Ph+1 の大小関係(Ph> Pk+1, Pk <Pk+1)を調べる. 解答 (1) 13回の試行で, 6の目がん回出るとき, 6の目以外は (13-k) 回出るから. Ph=13Ckl (1)(3) 13-k 同様に,0≦k≦12 のとき, k+1 Pk+1=13Ck+1 6 (2) PR 308 1 1 5 Pk+1 (k+1)! (12−k)!()() 13! k!(13-k)! (1)(2) 6 13-(k+1) =13Ck+10 12-k 6 k 13-k 6 k+1, 12-k 「6の目が出ない」 は「6の目が出る」 の余事象 P+1はPのに +1 を代入すると よい. (k+1)=(k+1) ・k! (13-k)! =(13-k)(12-k)! 1 6(13-k) -X 6(k+1) 5 X- k+1 6 13-k 1 5 5(k+1) 13-k 6 k=1/3のとき (8)(LP=Pk+1 となるが、 =P+1となるが, (i) = PR+1 13-k 4 21を解くと,k= k≤ 1.33... k, k+1が整数とな PR 5(k+1) 3 らないので不適 Pk より,k1のとき, Ph+11 つまり Pr<Pk+1 > 1 つまり Ph<Pk+1 おおよそ下の図 最大値引 cus (ii) Ph+1<1 のとき,(i)より、 k>1.33. Pk より,k≧2 のとき,P, Ph+14 (i), (i)より,k=0 のとき Po<P1, k=1 のとき Pi<P2, k=2のとき P2P3, k=3 のときP3>P4, となり, Po<Pi <P>P3>P> ...... >P13 よって,k=2のとき最大となる。大 0123 1213k 具体的に代入して書 き並べる。

未解決 回答数: 1
数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0
数学 高校生

ここの2番の書いてある意味がわからないので,一つ一つ教えて欲しいです。

重要 xy 例題 21 内積を利用したux+vy の最大・最小問題 00000 平面上に点A(2,3)をとり、更に単位円x2+y2=1上に点P(x, y) をと る。また、原点を0とする。 2つのベクトル OA, OP のなす角を0とすると き内積 OA・OPを0のみで表せ。 (2) 実数x, y が条件 x +y2=1 を満たすとき, 2x+3yの最大値、最小値を求め 指針 [愛知教育大 〕 (1)Pは原点Oを中心とする半径1の円 (単位円) 上の点であるから |OP|=1 (2) (1)は(2)のヒント A(2,3),P(x, y) に注目すると 2 x +3y = OA・OP かくれた条件-1≦cos 0≦1 を利用して, OA・OPの最大・最小を考える。 基本11 1 章 3 ベクトルの内積 解答 OA・OP=|OA||OP|cose =√13cose (2)x2+y=1 を満たす x,y に | (1) |OA| =√22+32 = √13, |OP|=1から YA A(2,3) 内積の定義に従って計算。 対し, OP = (x,y) DA = (2,3) として2つのベ クトル OA, OP のなす角を とすると, (1) から -10 1 x 2x+3y=OA・OP=√13cos 200 20°180°より, -1≦cos≦1であるから, 2x+3y の 0=0°のとき最大, 最大値は 13 最小値は13 0=180°のとき最小。 |-|OA||OP|SOA・OP k 別解 1. 2x+3y=kとおくと 2 y= -x 3 3 Fonie |OA||OP| これをx2+y2=1 に代入し, 整理すると 13x24kx+k2-9=0 ...... ① から求めてもよい (p.612 重要例題 19 (1) 参照)。 20 xは実数であるから, xの2次方程式 ① の判別式をD xは実数であるから,x とすると D≧0 D =(-2k-13(k-9)=-9(k-13) であるから k2≦13 よって√13≦k≦√13 別解2. (x,y)= (cos 0, sin01) と表されるから 2次方程式が実数解を もつ 実数解⇔ D≧ (数学Ⅰ)である 三角関数の合成 ( 数学II) 2x+3y=2cos01+3sinA=√22+32sin(01+α)=√13sin(01+α) 3 2 ただし COS α= √13 sina= √13 1main (+α) ≦1であるから -√13≦2x+3y≦√130°≦0,<360° 2 =2を満たすとき, ax + by

未解決 回答数: 1
1/16