学年

質問の種類

数学 高校生

(2)でf(x)の定義からf(x)=f(-x)となっているのが分からないので教えて頂きたいです。よろしくお願い致します。

12.0k 33 総合 1 <x<1 で定義された次の関数について、 以下の問いに答えよ。 f(x)= Cn n+ in = 1, 2,・・・・ 数学Ⅲ423 lc (x=0) (1) f(x)がx=0で連続のとき, 数列{cm} はどんな条件を満足するか。 (2) f'(0) が存在するとき, f' (0) の値を求めよ。 (3) f'(0) が存在すれば, 数列{n(Cn-c)}は収束することを示せ。 (1) f(x) は x=0で連続であるから n+1 lim| x→0 limf(x)=f(0)=c x→0 ① -≦|x|<1の各辺の逆数をとって(笑) 1200n 1 n< Txn+1 1 ② すなわち --1=∞ であるから, x→0のとき limf(x)=limcn lim cn=c [ 東京工大) 本冊 例題 91,127 ←x=af(x) が連続 ⇔limf(x)=f(a) xa -1≦x< 不等号の向きに注意。 Tx --(001)-(0) n→∞ Oale (200) (18) 2008 x ゆえに x→0 よって, ① から 818 (2) f(x)の定義から f(x)=f(x) ゆえに f'(0)=lim f(x)-f(0) =lim f(x)-f() } x0 x x→0 -x =-f'(0) ←|-x|=|x| ←微分係数の定義式 総合 f(x)-f(0) の分母分 X 子に-1を掛けてf(x) よって 2f'(0) =0 すなわち f'(0) = 0 (3) f'(0) が存在するとき, (2) から f'(0)=lim f(x)-f(0)=0 ...... ③ x→0 x f(-x) におき換える。 ここで, (1) ②の不等式から ann|f(x)-f(0)|≤. f(x)-f(0) |x| ゆえに n\c-c|f(x)=f(0)| n\cn−c|≤ |f(x)—ƒ(0)| xS)x=(x);\((x)=(x)x-(x)T (n+1)f(x)-f(0)| ·≤(n+1)| cn-c\.. |x| +28-1x8 xSI) (I- GUNT CL -5 ←不等式の等号は f(x)=f(0) のときに成 (4 り立つ。 \f(x)-f(0)|≦(n+1)|cn-c|から |x| |f(x)=f(0)|≤n\C-c\ n n+1 これと④の左の不等式から |f(x)—f(0) 1/(x)-(0)|snlc-cls|1(x)-100)| ここで, n→∞ とすると, x→0であるから, ③より ←両辺に n を掛ける。 [n+1 ← n+1 -≦|x|<1 n | f(x)=ƒ(0) lim -f(0)|=|S(0)1=0 x10 limn|cn-c|=0 よって n→∞ したがって、数列{n(cm-c)}は0に収束する。 ←はさみうちの原理。

解決済み 回答数: 1
数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
1/17