学年

質問の種類

生物 高校生

問1〜3までの解説おねがします🙇🙇🙇

71. 植生の遷移 ある植生において,各植物が地面をおおっている面積の割合を,その植物の被度という。 次の表は、 日本のある地域の丘陵帯に成立している, 成立年代が異なる植生 A~E について,それぞれの植生 を構成する植物ごとの被度を調査した結果を示したものである。 表中の数値は、四つの異なる階層 高木層,高木層,低木層, 草本層)において, 10m×10m の方形枠を用いて調査した被度を表 (注)に示した基準により1~5の階級に分けで示したものである。 ただし, 植生A~Eはそれぞ れ遷移の進行度合が異なることがわかっている。 階層構造 高木層 高木層 遷移 D→A→B→E→ 低木層 草本層 7560 植 物 シ 名 タブノキ 植生 植生 A 植生B 21 1 1 シイ 31 アカマツ コナラ 23 ススキ ラビ ベニシダ ヤマツツジ ヤブラン アオキ 1 1 1 1 1 32 1 1 1 1 1 1 1 2 1 1 1 1 植生 C 4 1 2 3 1 4 1 22 植生 D 5 1 2 1 1 1 1 2 2 1 1 2 植生E 23 2 1 3 1 1 1 2 (注)被度階級 1:10%未満, 2:10~25%, 3:25~50%, 4:50~75%, 5:75%以上 問1の高木層を占めるシイ, タブノキ, コナラ, アカマツのうち2種は陽樹, 2種は陰樹であ る。陽樹と考えられる2種の組合せとして最も適当なものを、次の①~⑥のうちから一つ選べ。 ① シイ, タブノキ ②シイ, コナラ ③ シイ, アカマツ ④ タブノキ, コナラ ⑤ タブノキ, アカマツ ⑥⑥ コナラ, アカマツ 問2 表の植生A〜Eのうち、最も遷移が進行し, 極相に近いと考えられるものはどれか。 最も適当 なものを、次の①~⑤のうちから一つ選べ。 ① A ②B ③ C 4D ⑤ E 問3次の植物のうち,陰生植物の特徴を顕著に示すと考えられるものはどれか。 最も適当なもの を、次の①~④のうちから一つ選べ。 ①ススキ ② ベニシダ ③ イヌワラビ ④ ヤマツツジ

回答募集中 回答数: 0
数学 高校生

解説お願いします

4 ある日、太郎さんと花子さんのクラスでは,数学の授業で先生から次のような宿題が出された. [宿題] △ABCの内部に点Pを取り, 点Pから直線 BCにおろした垂線をPD, 点Pから 直線CA に下ろした垂線をPE とする. また, 点Aから直線 BCに下した垂線の長さを ha, 点Bから直線 CA に下ろした垂線の長さを ん と置く. PD:hA=PE:hp=1:3 であるとき, △PAB と △ABCの面積比を求めよ. (1) 太郎さんは, 宿題について,つぎのような構想をもとに, 正解を得た. 太郎さんの構想 △ABCの面積をSとすると, △PBC, △PCA の面積もSを用いて表すことができる. それらを用いて, △PABもSを用いて表す. 太郎さんの解答・ △ABCの面積をSとすると △PBC = △PCA = ア S と表せる. よって △PAB= イ S であるから △PAB △ABC= イ : 1 (i) ア イ に当てはまるものを,次の①~⑦のうちから一つずつ選べ。但し、同じ ものを選んでもよい . ⑩ 2 0 3 ② 4 ③ 6 ④ 12 [⑤ 1-3 1 ⑥ DI ⑦ 4 太郎: 宿題の点Pはどのような点なのだろう. 花子 : 直線 CP と直線ABの交点をF と置くと, AF:BF = ウがわかるよ. 太郎: ということは, APFとAPCの面積比から, 点Pは△ABCの エ であると いうことがわかるね. (ii) ① 2:1 ② 3:1 [③ 1:2 ウ に当てはまるものを、次の⑩~④のうちから一つ選べ。 1:1 1:3 (iii) エ に当てはまるものを,次の①~③のうちから一つ選べ。 ⑩重心 ①外心 ②垂心 ③傍心 -5-

回答募集中 回答数: 0
数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
1/22