学年

質問の種類

数学 高校生

(2)の問題が分かりませんでした。とくに、場合分けの仕方と、なぜ-2,1という数字になるのが理解出来なかったので、詳しく教えてもらえると嬉しいです。

例題 135 絶対値記号を外す 場合に分ける Action» 絶対値記号は、記号内の式の正負で場合分けして外せ 次の式について、xの値によって場合分けして絶対値記号を外せ。 (1)|x-3| Defame (2) |x+2|+|x-1| 思考プロセス 「A (A≧0 のとき) |A|= ◆ 絶対値記号内が 1-A (A < 0 のとき) 10以上ならばそのまま外し、 [負ならば-1倍して外す。 (1)x-3の正負で場合分けする。 (2) |x+2| 1x- ・・・x=1でx-1の正負が変わる の方 (1)(ア)x-30 すなわち x≧3のとき e |x-3|=x-3 ここか 必要 (イ) x-30 すなわち x < 3のとき |x-3|= -(x-3)=-x+3 (ア)=2(イ) 1 (ウ) x x+2負 正 x-1負 負正 1次不等式 x-3の正負によって場合 分けする。 等号は (ア)(イ) のどちらに含めてもよい。 . 3x x X x on Point (ア)(イ)より |-3|- = x3(x≧3のと (2)x2のとき どちらも e x+3 (x <3 のとき) x+2<0, x-1 < 0 であるから |x+2|+|x-1|=(x+2)-(x-1)=-2x-1 (イ) −2≦x<1のとき18-0 正魚 x+2≧0, x-1 < 0 であるから |x+2|+|x-1|= (x+2)-(x-1)=3 (ウ) 1≦x のとき x+2> 0, x-1 ≧0 であるから |x+2|+|x-1|=(x+2)+(x-1)=2x+1 ( (-2x-1 (x <-2 のとき) (ア)~(ウ)より |x+2|+|x-1|=3 (−2≦x< 1 のとき) 【2x+1 (1≦x のとき) Point... 絶対値記号を外す 3つの場合分けで2つ の絶対値記号を同時に外 すことができる。 (ア)(イ) (ウ) x+2(x+2) x+2 |x-1|| -(x-1)|x-1 絶対値記号を外すとき, (1) では x = 3 (ア)(イ) どちらの場合に含めてもよい。 なぜなら、(イ)の場合において, x=3 を代入したとすると |x-3|= -(x-3)=-0=0 となり、(ア)の場合にx=3 を代入した結果と一致するからである。 同様に,(2)においてx = -2は(ア)(イ), x=1は(イ)と(ウ)のどちらの場合に含めて も問題はない。ただし、必ずどちらかには含めなければならない。 io

未解決 回答数: 1
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1
数学 高校生

丸で囲んだ所の解法について、 基本例題は普通に解けました、ですが練習問題だとは正しい答えは出せません。 どうしてでしょうか。

h これ 係数と fla- 絶対値を含む不等式の場合分けをしない解法 f(x) 以下では,第2章 「集合と命題」 の内容も含むため、その学習後に読むことを推奨する。 ||x|<c-c<x<c 絶対値を含む不等式は、 場合に分けて解くのが大原則であるが, 例題41 (1)~(3)6 ) | | x/ > c = x <- c & fc<x |A|<B⇔-B<A<B 次の不等式を解け。 (1) x-1|+2|x-3|≦11 (z)を微分するという. また. 基本 例題 42 絶対値を含む1次不等式 (2) ①①①①① ((1) 西南学院大, (2) 大阪経大) (2)|x-7|+|x-8|<3 基本41 (1) x-310 x-320 120円 指針 (1) 2つの絶対値記号内の式が0となるxの値は x=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解く。 (2)2つの絶対値記号内の式が0となるxの値はx=7,8 よって, x<7, 7≦x<8, 8≦xの3つの場合に分けて解く。 73 不等式の形によっては, により、場合分けをしないで解くこともできる。 (cは正の定数)を利用す ここでは、cが一般の文字式の場合、 つまり x Date A>BAK-BまたはB<A |x-4|=max (x-4, 4-x) 実数 α, bのうち大きい方 (厳密には小さくない方) を max (a,b)と表すと ⇒ max(ヌ-11-x)+2max(x-3.3-x) 例1 x-4/<3x⇔-3x<x-4<3x <) max13x-7-x+5 ・1-5-3x+7)=11 -lx-4|<3x max (x-4, 4-x)<3x よって 一般に,xが実数のとき|x|=max (x, -x)である (*)を示す。 ⇔x-4<3x かつ 4-x<3x x-4<3xx-4>-3x cas ⇔-3x<x-4 <3x 補足条件p: 「x-4|<3xかつ 3x≦0」, 条件g: 「-3x<x-4<3x かつ 3x≧0」 を満たす 体の集合はともに (空集合) である。 30の場合にも(*)は成り立つ。 例2 x-4>3x⇔x-4<-3x または 3x <x-4 ...... (空集合)は任意の集合の部分集合であるから, g, g⇒pはともに真とない (**) を示す。 17.x-11+21x-31=11 max(+2(3)、X-1+213-x)、1-x+2(x-3)(x+2(3-x) ≦11) 4 3x-7311 かつ一が≦11かつ×5≒いかつ-3x+7≦11 27かつ 4 -6 16 X3-6かつ16から水3-3 4 ミカミワ lx-4|>3xmax (x-4, 4-x)>3x 「a, bのうち大きい方よ ⇔x-4>3x または 4-x>3x さい」とき,c<a<b,c<b いう場合以外に,a<e<b ⇔x-4>3x または x-4<-3x ⇔x-4<-3x または 3x <x-4 b < c <a という場合がある。 [補足] 3x<0の場合, x-4>3%は常に成り立ち、 「x-4-3x または3x<x-4」も常に甘 立つ。 よって, 3x < 0 の場合にも(**)は成り立つ。 [参考] 絶対値を含む式が2つある場合について,上で紹介した記号 max を用いると |A|+|B⇔max(A,-A)+max (B,-B) max(A+B, A-B, -A+B,-A-B) であるから,Cの正負に関係なく、次のことが成り立つ。 [A]+[B]<CA+B<C かつ A-B<Cかつ A+B<Cかつ-A-B<C [A]+[B]>CA+B>CまたはABC または A+B>CまたはA-B>C (2)1-7+12-81-3 max (7-7. 7-x) + max (x-8 8-X) <3 max(x-7+7-8、メー7+8-x、ワース+スー8、ワーメな火)<3. max(2x-15,1,-1,-2x+15)<3 よって、 2x-15くろかつ1cろかつてくろ、かつ-2x+153 x9 かつ46 6 < x < 9.

未解決 回答数: 1
数学 高校生

高一数学です。 こちらの文章問題の不等式を作る中で(x-1)となる理由がわかりません…教えてください🙇‍♀️

71 基本 例題 39 1次不等式と文章題 00000 何人かの子ども達にリンゴを配る。1人4個ずつにすると19個余るが, 1人7 個ずつにすると,最後の子どもは4個より少なくなる。このときの子どもの人 数とリンゴの総数を求めよ。 指針 不等式の文章題は、次の手順で解くのが基本である。 [類 共立女子大 ] 基本34 この値を求め ことに注意 とは考えな に分けて 条件。 はダメ 1 41次不等式 章 ① 求めるものをxとおく。 ここでは,子どもの人数をx人とする。 ② 数量関係を不等式で表す。 リンゴの総数は 4x+19 (個) 「1人7個ずつ配ると, 最後の子どもは4個より少なくなる」 という条件を不等式で表す。 3 不等式を解く。 4 解を検討する。 注意 不等式を作るときは, 不等号に ② で表した不等式を解く。 xは人数であるから, xは自然数。 を含めるか含めないかに要注意。 a <b... b は a より 大きい, αは6より小さい, a は 6 未満 a≦b....... ・6は α 以上, αは以下 CHART 不等式の文章題 大小関係を見つけて不等号で結ぶ の形に -1(> の向き 求めるものをと ない 。 子どもの人数をx人とする。 不等 解答 1人4個ずつ配ると19個余るから,リンゴの総数は 4x+19 (個) する。 - る。 これを不等式で表すと 式は 整理して 0≦4x+19-7(x-1)<4 0≦-3x+26<4 各辺から26 を引いて 26≦x<-22 22 各辺を-3で割って 26 <xs 3 1人7個ずつ配ると、最後の子どもは4個より少なくなる から,(x-1) 人には7個ずつ配ることができ,残ったリンとく ゴが最後の子どもの分となって, これが4個より少なくな 12 不等式で表す。 は、(総数){(x-1) 人に配ったリンゴの数} ③ 不等式を解く。 ④解の検討。 23 22 =7.3.... 26 3 ・=8.6... xは子どもの人数で, 自然数であるから したがって 求める人数は 8人 また,リンゴの総数は 4・8+19=51(個) 4x+19

未解決 回答数: 1
数学 高校生

一次不等式の問題(2)です。 (a+2)x<4がx<4になるようにするんですけどどうして毎回場合分けしないといけないんですか。この場合だったら場合分けしたくてもすぐにa=-1って出て他の値は当てはまらないってすぐわかると思いました

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1) >x+α を解け。 ただし, αは定数とする。 000 (2) 不等式 ax<4-2x<2x の解が1<x<4であるとき, 定数αの値を漁 (2)類駒澤大] 基 基本34人 個す 指針 文字を含む1次不等式 (Ax > B, Ax <B など) を解くときは,次のことに注意数と A=0のときは、両辺をAで割ることができない。 AK0 のときは, 両辺を4で割ると不等号の向きが変わる。いうと指 (1) (a-1)x>a (a-1) と変形し, a-1>0, a1=0,α-1<0の各場合に分けて (2)ax<4-2x<2xは連立不等式 ax<4-2x 4-2x<2x と同じ意味。 まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 文字係数の不等式 割る数の符号に注意 0で割るのはタ CHART (a-1)x>a(a-1) [1] α-1>0 すなわちα>1のとき ① x>a まず, AxBO ①の両辺を で割る。 不等号の 0 > 0 は成り立たな 負の数で割ると の向きが変わる。 (1) 与式から 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x0 変わらない [3] α-1 <0 すなわち α <1のとき a>1のとき x>a, x<a よって a<1のとき a=1のとき 解はない, x<a 検討 (2) 4-2x<2x から -4x <-4 A=0のときの不 よって x>1 ゆえに,解が1< x < 4 となるための条件は, Ax>Bの解 ax <4-2x ...... ①から (a+2)x <4 ...... ① の解が x<4となることである。 [1] α+2>0 すなわち α> - 2 のとき,②から ② よって =0のとき、不等 0.x>B B0 なら 解はない なら解はすべ 4 x< よって a+2 4 a+2 =4 [I] 実数 ゆえに 4=4(a+2) よって a=-1 両辺に α+2 (≠0) これはα>-2を満たす。不 けて解く。 [2] α+2=0 すなわち α=-2 のとき,②は 0·x <4 よって、解はすべての実数となり、条件は満たされな 04は常に成り立 [3] α+2<0 すなわち α <-2 のとき,②から ら,解はすべての 4 a+2 このとき条件は満たされない。 x<4と不等号の [1]~[3] から a=-1 違う。 練習 (1) 不等式ax>x+a2+α-2を解け。 ただし, αは定数とする。 ④ 38 (2) 不等式

回答募集中 回答数: 0
1/29