学年

質問の種類

数学 高校生

数Ⅱの微分法の問題です。(3)について右写真の赤線部で、接線の傾きがf'(0)、f(3a/2)になるのは、t²(2t-3a)=0を解いた結果から出てきてると思うのですが、なぜその結果をf'(x)に代入すると傾きが出てくるのかが分からないので教えて欲しいです。

基礎問 96 接線の本数 曲線 Cty=-x上の点をT(t, ピーt) とする. (1) 点Tにおける接線の方程式を求めよ。 (2)点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ、ただし,a>0, bキα-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ますだから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します. 1つは(2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです。接線の傾きは接点における微分係数 (34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります。 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t2-1)(x-t) ∴.y=(3t2-1)x-2t 186 (2)(1)の接線はA(a, b) を通るので b=(3t2-1)a-2t3 ―は接点のx座標 が2つでてくるなら、(b)を通る2つの接線の .. 2t-3at2+a+b=0 ...... (*)接点がでてくるということ (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, y=x (極大値)×(極小値) = 0 であればよい. (t,t³-t) A(a,b) 95注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから

解決済み 回答数: 1
数学 高校生

高一数1 ☆の場合分けアイウで何をしてるかが分かりません!どういう場合分けなのかグラフで示して頂きたいです!よろしくお願いします🥲

4 (選択問題) (配点 20点) (1)5点 (2) 9点 (3)6点 kを定数とし、2つの関数 がある. f(x)=x2-z-6 g(x)=x2-kz+ 2k + 1 (1) 不等式 f(x) <0の解は2<x<3 である. (2) g(x) = 0 が異なる2つの実数解をもつようなんの値の範囲は である. k<4-2v5またはk>4+2V⑤ (3) g(x) = 0 が異なる2つの実数解をもち, そのうちの一方のみがf(x) <0 を満たすようなkの値 の範囲は である. 【解答】 5 k≤ または 10 4 (1)x2-z-6=(x+2)(x-3) より f(x) < 0 の解は 2<x<3 (2) (g(x)=x2-kz+2k+1=0が異なる2つの実数解をもつ条件は (判別式)>0が成り立つこと であるから k2 - 4(2k + 1) > 0 つまりk2 - 8k-4>0 よって、 求めるkの値の範囲は k<4-2√5k > 4+2√√5...(*) (3)k (*)を満たすときに放物線y=g(x) がx軸と2<x<3の範囲でただ一つの共有点をもつ ようなkの値の範囲を求めればよい. g ●¥324 4k +5, y- =-k+10であることに注意する. 5 (ア) g(-2) < 0 のとき g(3)>0 が条件であるからk<-- かつk10 より 5 4" (イ)g(-2) = 0 のときg(x)=x2+-- 3-2 4 5 k <-- 4 1 = (z+2)(4-3) であるからg(x)=0はæ= ☆ 条件を満たす解にもつ. 5 (ウ)g(-2) > 0 のとき g(3) < 0 が条件であるからk> かつ かつk 10 より 4 k > 10 以上より、 求めるkの値の範囲は k≤ VII 5 または10

解決済み 回答数: 1
1/42