学年

質問の種類

数学 高校生

なぜ1<x<4と4≦x<7と場合分けするんですか?

2 正弦定理と余弦定理 241 例題 124 三角形の成立条件 **** 3辺の長さが3, 4, xである三角形について,次の問いに答えよ. (1)xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ. 3 考え方 (1) たとえば, 3辺の長さが3, 4, 9では、 4 で三角形ができない. 9 AST 三角形ができるためには,a+b>c が成り立つ必要がある. (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する. (辺と角の大小関係は p.425 参照) 解答(1)3辺の長さが3,4,xの三角形が存在する条件は, [3+4>x x+3>4 x+4>3 C a,b,c を3辺の長 さとするならa>0, これより, 1<b>0c0 が必要 (2)(i)1<x<4 のとき,最大の角は長さが4の辺の対 角である. それを とすると, α <90°となるため には, cosa= x2+32-42 2.x.3 >0x2+32-40 これより, x<-√7.7x JEJEVUJI これと 1 <x<4より,√7<x<4 (ii) 4≦x<7 のとき,最大の角は長さがの辺の対 角である。 それをβ とすると, β <90° となるため には, cos β= 32+42-x2 2・3・4 ->0 32+42x20 これより, 5<x<5 大 これと 4≦x<7より, 4≦x<5 であるはずだが,こ れらは,三角形の成 立条件の3つの式か ら導かれる.(次ペ ージのColumn 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇔ b2+c>d を用いてもよい。 よって, (i), (ii)より, √7 <x<5

解決済み 回答数: 1
化学 高校生

自分の絵がへたで 結合角の大小のイメージがつきません😭 言葉で書いてあるので理解はできるのですが、、、 どなたか図を書いて欲しいです!!

遠い位置を占めるので、三角錐形となる。 三フッ化ホウ素分子 BF3は中心にあるホウ素原 子Bのまわりに共有電子対3個が存在し、これら が互いに反発し合い、できるだけ遠い位置を占め あるので、三角形となる。 できるだけ H H H---- F: B:F F B アンモニウムイオン NH+は中心にある窒素 原子Nのまわりに共有電子対4個が存在し、 これらが互いに反発し合い、できるだけ遠い 位置を占めるので、正四面体形となる。 したがって 4 ⑤、 5 1が③、 6 ⑥となる。 問3 仮定 bから、電子対間の反発力は、非共有電子対の方が共有電子対よりも強 い。 アンモニウムイオン NH4+ は、共有電子対4個をもち、これらが均等に反発するた め、結合角y (∠HNH) は、 メタン分子 CH の結合角と同じである。 アンモニア分子 NH3 は非共有電子対を1個もち、 図のように、矢印 方向の反発が大きくなるため、アンモニアの結合角BO(∠HNH) は NH+よりも小さくなる。 さらに、水分子 H2O では、2個の非共有電子対をもつため、反発力 はさらに強くなり、水分子の結合角α (∠HOH) は NH4+やNH3 よりもさらに小さくなる。 よって、 7 は、⑥y> β > α が正解となる。 2 ① 3 ④ 問3 ① 問2 12 37 解答 問1 3つの構造の配位数を考える。 塩化ナトリウム型では、結晶格子の中心の ●は、図のように、 6個の○と接している。 塩化セシウム型では、 結晶格子の中 のは、8個の○と接している。 閃亜鉛鉱型では、右下のに着目すると、●は 個の○と接している。 したがって、a の条件では、1つのが8個の○と接して みぞ 少ない人数でく 多いほう HH 非共有 H:O:H

解決済み 回答数: 1
数学 高校生

2番の問題でなぜタンジェントを求めてるんですか?

258 基本例 例題 157 三角形の辺と角の大小 : 000 △ABCにおいて, sin Asin B:sinC=√7:√31が成り立つとき △ABCの内角のうち、最も大きい角の大きさを求めよ。 △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 三角 p.248 基本事項園 の1つ 指針 (1) 正弦定理より, α: b:c=sinA: sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 基本例 1 AB=2, BC = (1)xのとり (2) AABC, 三角形の辺と角の大小関係より, 最大辺の対角が最大角 a<b⇔ A<B a=b A=B a>b⇔A>B であるから、3辺の比に注目し, 余弦定理を利用。 指針 (2) まず, 2番目に大きい角のcos を求め, 関係式 1+tan20=- 三角形の2辺の大小関係は,その対角の大小関係に一致する。) B (1) 三 (2) ここ 角 1 COS20 を利用。 例 C b により a (1) 正弦定理 解答 sin B sin C sin A a:b:c=sinA: sin B: sin C これと与えられた等式から よって、 ある正の数んを用いて ...... (*) 01- ak b√√3kk cos A= 2.√3k.k よって、 最大の角の大きさは 大の色である。 余弦定理により (√3k)2+k-√7k)2 と表される。ゆえに、が最大の辺であるから,4が最k を正の数として a:b:c=√7:13:1 sin A sin B ||a:b=sinA b C a b sin B SinC から b:c=sinB:si 合わせると(*)とい 解答 (1) よ (2) [ -008-288-CLA b C √3 1 とおくと -3k2 √3 2√3k2 2 A=150° (2)(1) から2番目に大きい角はBである。 k2+√7k2-(√3k)2 Fa=√7k, b=√1 c=k= abcからA よって,Aが最大の ある。 余弦定理により 203 A 5k² cos B= 2.k.√7k 275 k √3 2√7 01 B √7k 1 等式 1+tan2 B= から cos2 B tan2B= cos² B 5 1=(2/7)-1 28 001- 320- i-1= 25 25 A> 90° より B <90°であるから 5 3 V 25 tan B> 0 したがって tan B= 5 練習 △ABCにおいて 8 7 ② 157 sin A sin Basin C が成り立つとき √√3 = ■三角比の相互関係。 (p.238 例題 144 参 DARD (1)の結果を利用。 △ABC は鈍角三角形 (1)△ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2)△ABCの内角のうち、最も小さい角の正接を求めよ。 [類 愛知工 | 練習 ③ 15

未解決 回答数: 0
数学 高校生

2番の辺の範囲はどのようにして決まりますか?

本事項 錠、 を利用。 b 「基本例題 158 三角形の成立条件, 鈍角三角形となるための条件 AB=2, BC=x, CA=3である △ABC がある。 (1)xのとりうる値の範囲を求めよ。 △ABC が鈍角三角形であるとき,xの値の範囲を求めよ。 (1)三角形の成立条件|b-c| <a<b+c を利用する。 [類 関東学院大 ] p.248 基本事項 3. 4 重要 159 ここでは,|3-21 <x<3+2の形で使うと計算が簡単になる。 (2)鈍角三角形において,最大の角以外の角はすべて鋭角であるから、最大の角が鈍 角となる場合を考えればよい (三角形の辺と角の大小関係より、最大の辺を考える ことになる)。そこで, 最大辺の長さが3かxかで場合分けをする。 例えばCA(=3) が最大辺とすると, ∠B が鈍角 cos B<0 ⇒ c²+a²-6² 2ca <0⇔c+α²-62<0 よくわか んない となり,b2c2+α が導かれる。 これに b=3,c=2, a=x を代入して, xの2次不 等式が得られる。 (1)三角形の成立条件から 3-2<x<3+2 よって 1 <x<5 (2)どの辺が最大辺になるかで場合分けをして考える。 [1] 1<x<3のとき, 最大辺の長さは3であるから,そ の対角が 90° より大きいとき鈍角三角形になる。 32>22+x2 <|x-3|<2<x+3 または |2-x|<3<2+x を解い てxの値の範囲を求め てもよいが、面倒。 (1) から 1 <x [1] 最大辺が CA=3 A 4 章 18 sinBから sin Asina sinCから Sin B: sinc (*)となる として 解答 ゆえに すなわち x2-5<0 b=√3h よって (x+√5)(x-√5)<0) 2 (+)+) ② ゆえに -√5<x<√5 (+2) (1) 255B A>B> 最大の 係。 参照 3 x 1 <x<3との共通範囲は 1 <x<√5-1 B> 90°⇔ AC2 > AB2+BC2 [2] 3≦x<5のとき,最大辺の長さはxであるから, そ (1) から x<5 の対角が90°より大きいとき鈍角三角形になる。 [2] 最大辺が BC=x ゆえに x2>22+32 すなわち x2-13>0 (1)(A (IS)(1-2 S)(F B 3 よって ゆえに (x+√13)(x-√13)>0 x<-√13,√13<x 3≦x<5との共通範囲は √13 <x<5 [1], [2] を合わせて 1 <x<√5, √/13 <x<5 x STA>90° BC2>AB²+AC² 参考鋭角三角形である条件を求める際にも,最大の角に着目 し、最大の角が鋭角となる場合を考えればよい。 大辺を変形し、 練習 AB=x, BC=x-3, CA = x +3である△ABCがある。 [類 久留米大 158(1)のとりうる値の範囲を求めよ。 1 の範囲を求めよ。 p.263 EX113/

未解決 回答数: 0
1/11