学年

質問の種類

数学 高校生

青い線の移行って何でこうなるんでしたっけ?解説お願いします🙇‍♂️

引 69 対数の計算(I) 次の各式の値を計算せよ. 9 (1) log: 10+loga-log: 3 2 5 3 1 8 4 9 (2) 2log2 12- log2510g2√3 (3)10g102)+(10g105) +10g105・10g10 8 精講 対数は,1とか2とか普通に使っている数字を「10gar」の形で表す 新しい数の表現方法です. なぜ、このようなワケのわからない表し方をする必要があるのかと 思う人もいるでしょうが,まずは慣れることです. そのためには,ある程度の 量をこなすことが必要です. 何度も何度も間違いながら演習をくりかえし, 自 然に使えるようになるまでがんばることです。 <基本性質> a>0, a≠1, x>0 のとき I. y=logax x=a" (定義) II. 10gaa=1, 10ga1=0 注 y=logaxにおいて, a を底, x を真数 と呼びます. <計算公式〉 > 0, a≠1, M > 0, N> 0 のとき, I. logaM+logaN=logaMN II. loga M-logaN=loga M N III. loga M=ploga M (p: 実数) =210gz223-11 (log:8-log29) 1210g23 -- =2(21og22+logz3)-(3-21ogz3) -log23 =4+210ga3-4+1/loga3-1/2l05.3 -4-3-13 注 このように, 真数を素数の積の形で表し, 計算 するところがコツです. (3) 10g102=a, 10g105 = 6 とおくと 与式 = a +6+3ab =(a+b)-3ab(a+b)+3ab ここで, a+b=10g102+10g105=1 だから 与式=1-3ab+3ab=1 注 対数計算には, 積に関する公式がありません. たとえば, 10g103 10g 10 2 はこれ以上簡単になりま+ ポイント 対数計算は, ① 底をそろえて ② 真数を小さく 次の公式を用いる I. logaM+10ga N = logaMN M II. 10ga M-10gaN=10ga N III. loga M=ploga M 解答 109 109 109 3 5 (1) log2- +log21 --log2 =log: (10×3+) 5 ÷ = log(1x1x2/12)=log21=0 3-5 23 注 底がそろっていないときは,次の70で学びます. 底はすでそろって いる 公式Ⅰ Ⅱ 基本性質Ⅱ 演習問題 69 1 8 (2) 2log2 12-- -log2 -5log2√3 このままでは計算公 9 式 I, II は使えない 次の各式の値を計算せよ. (1)(10g102)+(log105)(10g104)+(log105)2 (2)log(√2+√3-√2-√3 )

解決済み 回答数: 1
1/14