学年

質問の種類

物理 高校生

(3)でどうして重力mgは含まないんですか??

電界中の荷電粒子の運動 例題 66 右図のような装置が真空中に置かれ ている。 左側のヒーターHから出た質 量m. 電気量-eの電子が, HA間に かけられた加速電圧 V によって加速 され,距離 dだけ隔てて平行に配置さ れた長さの2枚の電極 C D に平行 に入射する。 Cの電位はDよりVだ H Vo くなる。 314 324 ように,C,D と平行に軸、垂直に軸をとり, 電子の初速度は0とし、重力の 高い。 C,D の中央から距離Lだけ離れたところにスクリーンSを置く。上図の 影響は無視する。 (1) A を出た直後の電子の速さはいくらか。 (2) CD間にできる電界の強さEはいくらか。 (3) CD間で,電子のy軸方向の加速度αはいくらか。 (4) CD間の出口での,電子の軸方向の速度vy y 軸方向の変位 y を求めよ。 (5) CD 間を出た後, スクリーンSに衝突するまでの時間はいくらか。 (6)初めからスクリーンに衝突するまでのy軸方向の変位yを求めよ。 ●センサー 105 電圧Vで電子を加速した とき,電子に電界がする仕 事は, W=eV 解答 (1) 加速電圧にされた仕事 eV [J] だけ運動エネルギー 1 2e V が増加するので mvo?evo より,v= m (2)平行極板間の電位差と電界の関係より V V=Ed は12 電子の得た運動エネルギー は, ゆえに,E= d (3) 運動方程式より, mv²=eV 91. センサー 106 極板間では, 電界に平行な方向 →等加速度運動 電界に垂直な方向 ma=eE ゆえに、a= eE eV m md (4)CD間では軸方向には力が加わらないから等速度運動を する。CD 間を通り抜ける時間をとすると,軸方向の運 動より,l=vol, y 軸方向は加速度αの等加速度運動をする ので, eV 1 eVl →等速度運動 v₁ = at₁ = × × md Vo md √2e Vo 1 ev Y₁ 2 at₁₂ = × × 2 2 md (5) CD 間を出ると,電界はなくなるので、x軸方向にも 方向にも力がはたらかず,等速度運動をする。軸方向の運 Vo m VL e d № 2m Vo VI² Ad Vo ■ 原子・分子の世界 動より, L- =vot ゆえに、t= 2L-1 2L-1 m 200 22eVo 2 (6) 電極を出た後の y 軸方向の変位を y2 とすると, VI² VI(2L-1) y=y+y2=y+vyt= + Advo 4d Vo VIL 2d Vo

解決済み 回答数: 1
物理 高校生

(3)がわからないです。なぜ(ア)が答えになるのでしょうか...?(1)の誘導がない場合でも導けるように考え方を教えて頂きたいです。よろしくお願い致します。

B (思考 図1に示すように直交座標系を設定する。 初速度の無視できる電荷g (g>0),質量m の陽子が,y軸上で小さな穴のある電極 a の位置から電極 a b 間の電圧Vでy軸の 正の向きに加速され, z軸に垂直でy軸方 向の長さがしの平板電極c, d (z=±ん) か らなる偏向部に入る。 c, d間にはz軸の 124. 〈電磁場中の荷電粒子の運動〉 x 偏向部 h y E 変位 d 図 1 正の向きに強さEの一様な電場 (電界)が加えられている。これらの装置は真空中にある。 電場は平板電極 c,dにはさまれた領域の外にはもれ出ておらず,ふちの近くでも電極に垂 直であるとし、地磁気および重力の影響は無視できるとする。 〔A〕 電極bの穴を通過した瞬間の陽子の速さvo を,V,g, m を用いて表せ。 〔B〕 その後,陽子は直進し,速さのままで偏向部に入る。 (1)陽子が電極 cに衝突することなく偏向部を出る場合,その瞬間のz 座標 (変位) 21 を Vo,g, m, l,Eを用いて表せ。 (2)Eがある値Eより大きければ陽子は電極cに衝突し,小さければ衝突しない。その値 E を, V, l, んを用いて表せ。 〔C〕 陽子のかわりにα 粒子 (電荷 2g, 質量 4m) を用いて同じV,Eの値で実験を行った ところ,偏向部を出る瞬間の座標 (変位) は 22 であった。 Z2を, 21 を用いて表せ。 [D] E の値をE1 に固定し, 電極 c d にはさまれた領域にx軸の正の向きに磁束密度B (B>0) の一様な磁場 (磁界) を加え, 再び陽子を用いて実験した。 (1) Bをある値 B1 にしたところ,陽子は偏向部を直進し, 偏向部を通過するのに時間 T を要した。 B1 と T1 を, Vo, E1, lを用いてそれぞれ表せ。 (2) Bをある値 B2 (0 <Bz <Bi) にしたところ, 陽子が偏向部を出る直前の座標 (変位) は Z3 (230) であった。このときの陽子の速さを,g,m, V, E1, 23 を用いて表せ。 *(3) Bを 0<B<B, の範囲内で変化させて実験をくり返し, 陽子が偏向部を通過するのに 要する時間を測定した。 このとき, BとTの関係を表すグラフはどのようになるか。 図2の(ア)~(オ)の中から最も適当なものを1つ選べ。 T4 TA (ア) T₁ T4 TA TA (イ) (ウ) (エ) (オ) T1 T1 T1 T₁ 10 B₁ B 0 B₁ B B₁ B 0 B₁ B 0 B₁ B 図2 [東京大〕

解決済み 回答数: 1
物理 高校生

なぜこれは電位が急に足し算をし出すんですか? 意味がわかりません。位置エネルギーなら2dの点だけでいいじゃないですか。何やってんですかこれって。 図で教えてくれると助かります。

09316 T〔N〕と 。 り、 7 320 だけ離 ニ運ぶ →B /m 低いから 1773年にキャヴェンディッシュが発見していた。 電気力線と等電位線 物理 例題 69 の点電荷がある。 クーロンの法則の比例定数をko とし,重力の影響は考えない。 真空中で, x軸上の原点に電気量4gの正の点電荷, x=dの位置に電気量4の正 (1) 軸を含む平面内の電気力線の様子を表す図として最も適当なものを下の① ~④の中から選べ。 ただし, 図中の左の黒点は、軸の原点、右の黒点はx=dの 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また, 等 ■位線を表す図として最も適当なものを, ①~④の中から選べ。 Q (2) x軸上で電界が0になる点はどこか。 0- xxx 1-X 1-43 3 質量(m,正の電気量 Qをもつ荷電粒子をx軸上のæ=2dの点に静かに置いた。 の電荷がx軸上の無限遠点に行ったときの速さを求めよ。 ① センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) ヘ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E= andal S (SE に垂直な面積) 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 りになる点あいる センサー102 センサー 103 真空中の荷電粒子の運動 ~mv²+qV=- 2 (重力を考えない場合) Furk 解答 (1) この場合、電気力線は正電荷から出て無限港に行く。 *********** ------- 本数は電気量に比例する。 答えは④ 実際は三次元なので,この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② (2) 世界の強さは+1Cの電荷が受ける力である。電界がOK なる点の座標をx(0<x<d) とすると、クーロンの法則よ り ko v=kx²² 4g×1 2² = ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 V=ko エネルギー保存 mx02- 4q 9 + ko (2d-d) 2d ▶309 316 x=2dの点では電界の向きが同じなので不適。 ( 3 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq ....... (1) d +|QV|=| ①②より, v= GK Fr Bxx cd) mu²+Qx0 6koqQ md 2 ゆえに, x= d 3 物理 基礎 物理 24 電界と電位 197

回答募集中 回答数: 0
物理 高校生

【電界と電位】 +をどこにおいてもどっちも反発してどこ置いても0にならないと思うんですけど、意味がわかりません。 YouTubeとか色んな問題見るとどっちかが−なので、引力によって消えるのがどこかわかるんですけど、プラスで考えたら無理くないですか

電気力線と等電位線 T ・軸上の原点に電気量4gの正の点霊荷 エ=dの位置に気晃4の正 の点電荷がある。クーロンの法則の中 300 40 . 重力の影響に考えたい。 (1) z軸を含む平面内の電気力線の様子を表す図として最も適当なものを,下の① 例題69 真空中で, T ~④の中から選べ。 ただし, 図中の左の黒点は軸の原点 右の黒点はx=dの 電線を表す図として最も適当なものを ① ~ ④ の中から選べ。 OPLE 質量,正の電気量Qをもつ荷電粒子をx軸上のx=2dの点に静かに置いた。 人とd-xになる この電荷がx軸上の無限遠点に行ったときの速さ”を求めよ。 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また、等 x軸上で電界が0になる点はどこか。 0- センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) へ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E=- S (SはEに垂直な面積) りになる点をい 102 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 ●センサー103 真空中の荷電粒子の運動 ·mv²+aV=-F 解答 (1) この場合、 電気力線は正電荷から出て無限遠に行く。 本数は電気量に比例する。 答えは④4 ---O 4g×1 注 実際は三次元なので、 この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② @k (2) 電界の強さは+1Cの電荷が受ける力である。 電界が0 なる点の座標をx(0<x<d) とすると、クーロンの法則よ り. ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 = ko Aq 9 +ko 2d (2d-d) エネルギー保存の法則より, mx0°+QV= V = ko 注x=2dの点では電界の向きが同じなので不適。 (3) 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq (√+V) d ①②より, v= Asu 2 mv² + Qx0 物理 GURES 6kgQ md 2 ゆえに, x= d 3 20 24

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
物理 高校生

ホイートストンブリッジです。(2)まではいいのですが(3)がどうしてもわからないです。 なぜ電流計が0だと(1)と電圧が同じになるんですか? あとの計算でV1=80×10^-2 としてますが、これは(1)と流れる電流が同じということですよね?したら(1)のようにキルヒホッフ... 続きを読む

必修 11. 電流と磁場, 荷電粒子の運動 基礎問 電流と磁場 Ⅰ. 図1のように,長い導線を水平に南北方向に張り,そ の真下の距離 10 [cm] のところに小さな磁針を置いて、 導線に電流を流した。このとき,磁針のN極は西に 45° 振れて静止したことから,この場所での地球の磁場の強 さの水平成分は 25 〔A/m〕 であることがわかった。 (1) 導線にはどの向きに電流を流したか。 (2) 流した電流は何 〔A〕 だったか。 (3g) 次に導線を取り除き、かわりにコイルの頭を南北方向と垂直になるよ うに1巻きの円形コイルを置き、その中心の磁場が0となるようにした い。 円形コイルの半径を20〔cm〕 とすると, コイルに流すべき電流の強 79 さは何 〔A〕か。 ⅡI. 図2のように、紙面に垂直な導線P, Qに同じ強さIの 直線電流が流れている。Pの電流は紙面の裏から表に向か う向きに,Qの電流はPと逆向きに流れている。導線P. Qからの距離がともに4の紙面上の点Xに生じる磁場の (福岡大改・愛媛大) 強さを求め、その向きを図示せよ。 I H=- (r: 電流からの距離) 2πr () 円形電流の中心の場合 北 H=- ( r円の半径) 2r 45 C 15+0=3 P 0 10cm 図1 XA a. 3. ●地磁気 地球は北極をS極,南極をN極 精講 とする大きな一つの磁石であり,地表には 地球による北向きの磁場が存在する。 これを地磁気という。 【参考】 磁気量 (磁極の強さ) をmとすると, 強さHの磁場 から磁極が受ける力の大きさFは,F=mH である。 ●電流がつくる磁場 電流がつくる磁場の強さは電流の強さに比例するが, そ の強さを与える式は電流の形状によって異なる。 電流Iがつくる磁場の強さを Hとすると 電流ⅠⅡ (i) 直線電流 ( 十分に長い) の場合 a 図2 H 磁場 (A) SLO TA a 1 Gir Q ルの内部の場合 ソレノイドコイ H=nl (n: 1 〔m〕 あたりの巻数) ●右ねじの法則 右ねじの進む向き ●京靴の向きにとると、右ねじを回す 向きが磁力線の向きを表す。この 磁力 磁力線の向きの接線方向が磁場の間 である。 磁場 クトル和である。 ●磁場の合成 複数の電流による磁場は、各電流がその場所につくる磁場のベ I. (1) 磁針の向きより, 合成磁場の向きは北向 真上から見た図 きから西へ45° 振れているので、 導線の電流が 45 つくる磁場は西向きである。 よって, 導線を流れる電流の向き は、右ねじの法則より, 北向きである。 (2) (1)より、導線の電流がつくる磁場の強さをH [A/m] とす ると, H=25 [A/m〕 である。 電流の強さをI〔A〕 とすると, I 2×0.10 よって,I=5=5×3.14≒16 [A] (3) 円形コイルの中心の磁場が、 地磁気と逆向きで、同じ大き H= -=25 さであればよい。 コイルに流す電流の強さをI' 〔A〕 とすると, I' VI I 2ла 磁場H I. (1) 北向き Ⅱ. 磁場の強さ: -25 よって, I'=10 [A] 2×0.20 TARS KAME I. 導線P, Q の電流がそれぞれ点Xにつくる磁場の強さを H, HQ とすると, I 2лα H Hp=Ho= 導線 P, Q の電流がつくる磁場の向きは右図となる。 磁場の強さが等しく, なす角が120° であることより,合成磁場 の向きは右図の太い矢印の向きである。 また, 合成磁場の強さ Hx は , Hp (または HQ) と正三角形をつくることより, (2) 16 〔A〕 I 向き 2ла' Hx=Hp= 【参考】 成分で求めると, Hx=Hpcos60°×2=He となる。 北 R÷Á÷AN….... (3) 10 (A) a の図 磁力線 .25 [A/m) 電流 磁場 H₂O H60060° Far-102043: H₂ 図 a Q 第4章 電気と磁気 流と磁場, 荷電粒子の運動 177

回答募集中 回答数: 0
1/4