学年

質問の種類

数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
1/34