学年

質問の種類

数学 高校生

ここのマーカーした部分の[1]でなぜn=2のときを使うんですか?いつもn=1でなぜこれではだめなのか教えて欲しいです

27, Go Ahead 22 1 成り立つ」 と仮定。 用いよ ぞれの 致する も成 きの 共 右 頻出 を 1321 数学的帰納法 [2] ・・・不等式の証明(1) を2以上の自然数とするとき, 数学的帰納法を用いて次の不等式を証明 1 1+ + 22 1 n² せよ。 自然数nについての等式, 不等式の証明は数学的帰納法を考える。 が成り立文 目標の言い換え [1] n=2のときに①が成り立つことを示す。 ■[1] n=2のとき (左)= || (①の左辺)= [2] 「n=kのときに ① が成り立つと仮定すると, n= k+1 のときにも ① が成り立つ」 (①の右辺)=1 ことを示す。 と =kのときの不等式 1+12+1/+..+. 22 32 のとき = 1 32 - 1 (右辺) (左辺)=2- =1+ 1 k +...+ 1 + 2/2 + 13/1/2 2² 3² 1 k+1 n = k+1 のとき (右辺) (左辺) 1 = (2-√2 + 1) - { ¹ + 2/² + 3/² =12- 22 1 201 >2- - (2-12 ²1² ₁) - { (2² - 1/2) + k+ よって 1 + n=2をそれぞれに代入してod (左辺) (右辺)をす。-p + 1+ 2 K+1) - {1+ (k+ 1)² 1 1 3² 2² «Re Action 数学的帰納法では,n=k+1のときの式の複雑な部分に仮定の式を用いよ 例題 320 + + n 1 3 4 = 2 2 (左辺) (右辺) となり, ① はn=2のとき成り立つ。 [2] n=k(k≧2) のとき, ① が成り立つと仮定するとk≧2に注意する。 + 1/3<2 - 4/1/20 k² k 1 k² 3 +... 1 + 22 1 (k+ 1)² <2- (2 +・・・+ + 2- 1/1/201 k 1 n 32 仮定の利用 k(k+ 1)² 1 (k+ 1)² ゆえに, ① は n =k+1 のときも成り立つ。 [1],[2]より,2以上の自然数nに対して①が成り立つ。 (1, 2, 3, ..) ROSHAN (₂) 0. +...+. >0 を仮定。 1 k² + (k+ 1)² ) 1 k² + √k + 1² ] > <2- められた数列 (4.) の一般項を <2√ MIN 1 k+1 ■ 321 nを自然数とするとき, 数学的帰納法を用いて次の不等式を証明せよ。 1 (右辺) (左辺) > 0 を示 す。 2であるから 6 章 k(k+ 1)² > 0 仮定したn=kのときの 不等式を利用する。 に含まれる様子 18 「漸化式と数学的帰納法 秋の①②の を引く。 を引く。 p.571 問題321 =(-1. 3) 555

未解決 回答数: 0
数学 高校生

どういうことですか? 問題の概要を教えてください。

考え方 SO 解 3 漸化式と数学的帰納法 545 例題308 数列と図形 (1) *** 平面上にどの2つをとっても互いに2点で交わり,また,どの3つを とっても同一の点で交わらないn個の円がある.これらの円によって平 面は何個の部分に分けられるか. その個数 an をnの式で表せ。食 n個の円がある状態から, (n+1) 個目の円をつけ加えたとき,もとのn個の円と何 ヶ所で交わるかを考える 円の個数 [5₁_n=1 n=2 練習 308 2 ISHOKIS 2 31 2 4 k=1 (2)より。 =n²-n+2 これは,n=1のときも成り立つ。 よって, an=n²on+2 n=3 2 +2 6 3 7 2 4 5 割される.これらの弧に対して, それぞれ新たな平面の部 分が1個ずつ増えるので,平面の部分は 2n個増える . したがって, an+1=an+2n *b+8x1" (1). d=2-2 n≧2のとき, an= a₁ +2k=2+2.(n-1)n 4 +4 8 HE 7 + n=4 2 14 増えた交点の個数 6 増えた平面の数 +6 平面が分けられる数 20140AH 80 14 実験より,(増えた交点の個数)=(増えた平面の部分の数) であることがわかる . 4. 10 12 n=1のとき, a₁=2 n個の円があるとき, (n+1) 個目の円を新たにかくと, この円はn個の円とそ れぞれ2回ずつ交わる. すなわち、他の円と2n個の交点を持つので, (n+1) 個目の円は2個の弧に分 -3 9 13 n=3のとき, 4つの交点に対して, 4つの弧 1) A 4つの新たな平面 Focus くり返しによる図形の問題については,まず図をかいて規則性をつかもう とくに番目と(n+1) 番目の関係を式で示す 注 この問題を, 平面を球面にして, 「球面上に,どの3つをとっても1点で交わらな n個の大円 (半径が球の半径に等しい円) がある.これらn個の大円は球面上を いくつの部分に分けるか, その個数αをnの式で表せ.」 という問題も全く同じ考 え方で, an=n²-n+2 であることがわかる. 三角形ABC の各頂点と, それぞれの対辺上の両端以外の異なる100 個の点 を直線で結ぶと, これら300本の直線によって三角形ABCの内部はいくつ の部分に分けられるか。 ただし、どの3直線も三角形ABC内の1点で交わ (名古屋市立大) 数 列

回答募集中 回答数: 0
数学 高校生

数Bの問題です。提出が近くて困っています💦 【?】について教えてください🙇🏻‍♀️

Link 考察 研究 漸化式の活用 漸化式を活用して,次の図形の問題について考えてみよう。 例題 1 解答 平面上にn本の直線があり、どの2本も平行でなく,また,どの 3本も1点で交わらないとする。 これらn本の直線が、平面を α 個の部分に分けるとき, am をnの式で表せ。 1本の直線で, 平面は2つの部分に分けられるから a=2 DHC n本の直線により, 平面が an 個の |n=3のとき 第三 部分に分けられているとき (n+1) 本目の直線lを引く。 TA l n本の直線とn個の点で交わり, Tr+25} (n-1) 個の線分と2個の半直線にして 分けられる。 OD これらの線分と半直線は, それが含まれる各平面の部分を2つに 分けるから,直線lを引くことで平面の部分が (n+1) 個増える。 an+1=an+(n+1) すなわち an+1-an=n+1 数列{an}の階差数列の一般項がn+1であるから.n≧2のとき an=a+1/(k+1)=2+1/12(n-1)n+(n-1) よって an = 1/2 (n²+n+2) よって 初項は α=2 なので,この式はn=1のときにも成り立つ。 1 an - (n²+n+2) したがって 求める式は 2 2 3 【?】 直線l を引くことで平面の部分が (n+1) 個増加する。 n=3のときの図を使って説明してみよう。 ・ この理由を, 10 15 20

未解決 回答数: 1
1/2