学年

質問の種類

数学 高校生

この問題のオカにはいる値の解説で、赤線を引いたところを教えて欲しいです!

(1) 太郎さんと花子さんは, 有理数と無理数について話している。 太郎: 有理数って, 整数とか, 分数のような数のことだったかな? 小数はど うだろう? 花子 : 小数でも0.5 は 1/3 と表せるし, 0.33は 1/18 と表せるから,有理数だ ね。でも,2は1.41 と小数で表すことができるけど, 無理数だよ。 太郎:小数ということだけでは, 有理数か無理数かわからないね。 そうか! 有理数はルート(√)で表されないような数ってことだね。 花子: ルートがついてもは2だから,整数で,有理数だよ。 ルートでなくて もも無理数だったはずだよ。 太郎:ということは,有理数は,整数または整数) で表される数ってことだね。 1 (整数) (整数) 花子: 整数も,例えば2はのように数で表されるから,有理数は (整数) で表される数でいいと思うよ。 ただし分母を0にすることはでき (整数) (整数) ないから, 正確には だね。 (0以外の整数) 実数全体の集合を全体集合とし, 有理数全体の集合をQ, 整数全体の集合を Z, Zの補集合とする。 QZの要素となるものは,後の⑩~9のうち, I である。 ア イ ウ また,QZの要素となるような自然数kのうちで最小のものは V k オガである。

解決済み 回答数: 1
数学 高校生

高一数学です。 背理法がよくわかりません。背理法の私の解釈は命題が成り立たないということをを証明したら成り立たないだから命題が成り立つね、みたいな感じなんですけどこの二つの問題ってどっちも無理数ってことを証明したいから有理数と仮定して証明した時に有理数になりました。無理数っ... 続きを読む

80 基本 例題 44 背理法による証明 00000 (1)α 6 有理数で, 6=0 とする。 √2 が無理数であることを用いて, la+b√2 が無理数であることを証明せよ。 (2)6が無理数であることを用いて、√2+√3 が無理数であることを証 明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で背理法 与えられた仮定から直接結論へ導くことが困難なときは, 背理法が有効。 背理法で証明する手順 1 仮定はそのままにして (1) では,「√2が無理数である」), ① p.76 基本事項 71 結論を否定する (1) では, 「a+b√2 は無理数でない」とする)。 5058 2 計算や推論により、矛盾を導く。 (1)では,√2 が有理数の和・差積商の形で表されてしまうという矛盾を導く。 なお,実数は有理数と無理数に分けられるから、無理数であることを否定すると有理数にな る。 解答 (1)a+b√2 が無理数でないと仮定すると,a+b√2 は有理 数である。 a+b√2 =c (cは有理数) とおくと, 6≠0 から √2= c-a b a,b,cは有理数であるから, c-a も有理数となり b √2 が無理数であることに矛盾する。 ゆえに,a+b√2 は無理数である。 (2)√2+√3 が無理数でないと仮定すると,√2+√3 は 有理数である。 √2+√3=r(rは有理数)とおいて,両 辺を2乗すると 5+2√6 = 2 AB=BC 変形して √6=12-5 BC 2 rは有理数であるから, 2-5 2 有理数となり√6 が無 理数であることに矛盾する。=9U9 ゆえに、√2+√3 は無理数である。 inf. 有理数の和・・ ・商は常に有理数 (p.41) であるが, 無理数の和・ 差・積・商は無理数とは限 らない。 例えば, (1+√2)+(1-√2)=2 (2+√2)-(1+√2)=1 (1+√2)×(1-√2)=-1 3√2-√2=3 など。 9 6 を導き出すために 両辺を2乗する。

解決済み 回答数: 2
数学 高校生

黄チャートの例題46の(2)の問題で、(1)の結果を利用すると書いているんですけど、なにを利用しているのかわかりません。教えてください🙇‍♀️

基本 例題 46 有理数と無理数の関係 (1) a, b は有理数とする。 a+b√2=0 のとき, √2 が無理数であることを 用いて, a=b= 0 であることを証明せよ。 (2)(1+√2)x+(-2+3√2)y=10 を満たす有理数 x, yの値を求めよ。 CHART & HINKING MOITUJO 2 基本44 (1) 直接証明するのは難しいから, 背理法を利用しよう。 結論の否定は 「α≠0 または b≠0」であるが,この仮定からスタートする必要はない。a+b2=0 という式に注目し 最初の仮定を見極めよう。 (2)√2について整理して, (1) の結果を利用する。 このとき, 前提条件 「x,yは有理数√2 は無理数」 を書くことを忘れないよう注意。 解答 (1)6=0 と仮定すると √2=-1 b a,bは有理数であるから,右辺のは有理数である。 左辺の√2 は無理数であるから,これは矛盾している。 よって b=0 a+b√2=0に6=0 を代入してa=0 したがって a=b=0 (2) 与式を変形して (x-2y-10)+(x+3y)√2 = 0 x,yは有理数であるから, x-2y-10, x+3y は有理数で あり√2 は無理数である。 理由である a+b√2 0 から b2= 両辺を6(≠0) で割ると 2=-1 a このことから、最初の仮 定は 60 だけでよい。 2について整理。 この断りは重要。 詳しくは右ページ参照。 ゆえに、(1)の結果から これを解いて x-2y-10=0, x+3y=0 x=6,y=-2 POINT 有理数と無理数 a,b,c,d を有理数, √T を無理数とすると ① a+b√7=0 ② a+b√T=c+d√T のとき a=b=0 のとき a=c, b=d MOITAMЯO ここで,「a, b,c,d は有理数」という条件に注意しよう。 この条件がないと, 例えば① では a=b=0以外に a=√T(無理数) b=-1 もa+b√T =0 を満たしてしまう。 PRACTICE 46Ⓡ 3 √3 は無理数である。 7+a√3 2+√3 24 BUITAR 9 -=6+9√3 を満たす有理数 α, b の値を求めよ。

解決済み 回答数: 1
1/27