学年

質問の種類

数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0
数学 高校生

この問題なんですが、最小公倍数のほうは 展開しては行けないんですか?

*** 1 多項式の乗法・除法と分数式 27 例題 5 多項式の約数・倍数(1) ***** 次の各組の多項式の最大公約数と最小公倍数を求めよ。 (1)(x-2)(x+3), (2x+1)(x+3) 第1章 (2)x2-1,x-1 (3) 2x2-5x-3, 8x +1 基本は こめに、 の右の してから 考え方 (1)(x-2) (x+3) の因数は,x-2, x+3, (2x+1)(x+3) の因数は, 2x + 1, x + 3 となり, x+3が共通の因数であるから,x+3は,(x-2)(x+3) (2x+1)(x+3) の公約数である. 公約数の中で次数が最大のものが最大公約数になるので,この場合は,x+3が最 大公約数である. (1)(x-2)(x+3), (2x+1)(x+3) より, 方程式 解答 www 最大公約数は, x+3 最小公倍数は, (x+3)(x-2)(2x+1) (2)x2-1=(x+1)(x-1) www x-1=(x-1)(x²+x+1) 172)=8A(+2)=A 8A) まずは,各式を 因数分解する. AA(+) n (x-1)(x+1)(x²+x+1) A Jay www よって、 (g) (+ 最大公約数は, x-1 最小公倍数は, A 531 (3) 2x2-5x-3=(2x+1)(x-3) wwwww 8x+1=(2x+1)(4x²-2x+1) よって, 最大公約数は, 2x+1 最小公倍数は, (2x+1)(x-3)(4.x²-2x+1) 注》 整数の公約数や公倍数の考え方と同じである. 例)1827 のとき, 18=2×32 27=33 (1 素因数分解する. よって,最大公約数は 3°=9, 最小公倍数は,2×3=54 となる。 また,x+1 と x-1のように, 共通の因数となる1次以上の多項式がない場合,最 大公約数は1となり、この2つの式を互いに素な多項式という.

解決済み 回答数: 2
数学 高校生

(3)についてです。 なぜa=の式ではなくb=の式を代入するのでしょうか 逆ではダメなのですか?

は0でない とろがともに3の倍数ならば,7a4bも3の倍数であることを証明せよ。 ひと 40 がともに整数であるようなαをすべて求めよ。 a もの倍数で,かつがαの倍数であるとき, aを6で表せ。 aがろ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき, 整数を用いて a=bk と表される。このことを利用して解いていく。 (2)αは5の倍数で,かつ40の約数でもある。 ( a, b が3の倍数であるから, 整数k, lを用いて) よって a=3k, b=31と表される 7a-46=7・3k-4・3l=3(7k-4l) 7k-41 は整数であるから,7a-46 は3の倍数である。 A (2) ゆえに,kを整数としてα=5k と表される。 -が整数であるから,αは5の倍数である。 40_40_81001) って 5kk a P.516 基本事項 ■ b は αの約数 a=bk Labの倍数 1年 整数の和差積は整数 である。 <a=5k を代入。 (C) a が整数となるのは, kが8の約数のときであるから k=±1, ±2, ±4, ± 8 したがって a=±5, ±10, 20, ±40 αがbの倍数, bがαの倍数であるから, 整数k, lを 用いて a=bk,b=al a=bk を b=al に代入し,変形すると b = 0 であるから kl=1 とされる。 b(kl-1)=0 負の約数も考える。 <a=5kにkの値を代入。 αを消去する。 k, lはともに1の約数で ある。 4 章 18 約数と倍数 最大公約数と最 k, lは整数であるから k=l=±1 したがって a=±b 倍数の表し方に注意! 上の そば (1) で a=3k, b=3kのように書いてはダメ! あは別々の

未解決 回答数: 1
1/210