学年

質問の種類

数学 高校生

数学2B 軌跡の問題です。 (3)で “ここで⑤よりX=-2+2/1+a^2” とありますが、なぜそうなるのでしょうか?💦

例題 114 軌跡 〔8〕・・・ 線分の中点の軌跡 (2)・・・(札 円 x2 +y2 = 1 ・・・ ① と直線 αax-y+2a=0 ・・・ ② について (2) αが (1) で求めた範囲で動くとき, その2交点を結ぶ線分の中点の座 (1)円 ①と直線 ② が異なる2点で交わるとき, αの値の範囲を求めよ。 をαを用いて表せ。 (3)(2)の中点の軌跡を求めよ。 (1) ①と直線 ② が異なる2点で交わる ① ② を連立した2次方程式 (*) の判別式DがD> 0 ①の中心と直線②の距離) (①の半径) どちらで考えるか? (2)素直に考えると・・・ X = 中点(X, aX-Y- したがっ ゆえに, (3)5 X=- よって ↑計算が繁雑 ⑥ の y 2次方程式(*)から2交点の座標を実際に求めて考える。 求めるものの言い換え 思考プロセス 2次方程式(*)の2解をα, βとする 解と係数の関係 中点のx座標 a+β 2 《ReAction 線分の中点の軌跡は,解と係数の関係を利用せよ 解 (1) ①,②より,yを消去して整理すると ⑦を Y2 = 0 よっ a a+β. ここ 2 ④よ 例題113) 軌跡 4 D>0より 3 ・④ であるから √3 例題 (1 + α²)x2 + 4ax + 4a² -1 = 0 ... ③ 94 ① ② は異なる2点で交わるから, ③の判別式をDと すると D > 0 D == (2a²)² - (1+ a²)(4a²-1) = −3a²+1 -3a²+1>0-6 円 ①の中心と直線 ② の 距離を d,円 ① の半径を r として,d<r から求 めることもできるが、(2) で交点の座標を考えるか ら,③を考える。 Play Back 8 参照 √3 Point (1) ② <a< 例題 130 (2) αが(1)で求めた範囲を動くと き,円 ①と直線②の2交点の x座標は,xの2次方程式 ③の 2つの実数解である。 3 3 1 <0 + (3 (2 (X, Y) 1 より ** ④ これらをα, β とすると,解と 係数の関係より (1) a<± としないよう -2-1a O B a+B= 4a² 1+ a2 とすると よって,円 ①と直線 ② の2交点の中点の座標を (X, Y) la+B= b a に注意する。 ■2次方程式 lax+bx+c=0の2つ の解をα,Bとすると 練習 11 198 laβ=

解決済み 回答数: 1
数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

共通テスト/数学2B/第2問 タ の解き方を教えて頂きたいです。 よろしくお願いします🙇‍♀️

y = 第2問 (必答問題) (配点 30 ア [1] 太郎さんは、ボールをゴールに蹴り込む ゲームに参加した。 そのゲームは、 右の図1のように地点Oか ら地点Dに向かって転がしたボールを線分 OD 上の一点からゴールに向かって蹴り込み, 地点Aから地点Bまでの範囲にボールが飛 び込んだとき, ゴールしたことにするという ものであった。 13 B A 3m 1 ル xと表すことができる。 2m (第3回 7 ) 0 B そこで太郎さんは、どの位置から蹴るとゴールしやすいかを考えることにした。 地点Oを通り, 直線 ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは,Oを原点とし、座標軸を0からCの方向をx軸の正の方向。 OからBの方向をy軸の正の方向となるようにとり、点Pの位置でボールを蹴る ことを図2のように座標平面上に表した。 A ボールが転がされ、 ボールを蹴るライン 9m 図2 このとき, A(0, 2), B (0, 5) であり, ボールを蹴るラインを表す直線の方程式は 図1 3mi (数学ⅡI・数学B 第2問は次ページに続く。) 太郎さんは,最もゴールしやすいのは、∠APB が最大になる地点であると考 えた。 ∠APBが最大となる点Pの座標を求めよう。 Px, ア イ である。 方向となす角をそれぞれα, B (1/2<B<<<12/2)とする。 このとき tand= tan (α-β) (0<x≦9) とし、図2のように、 直線AP, BP がx軸の正の X ウ クケ x+ ∠APB=α-β と表され, APBが夢になることはないから, tan (a-β)を考 えることができる。 1 クケ さらに, tan (a-β)= シス x 5, tanβ = カキ x クケコサx+シス >0であるから, 0x≦9のとき tan (α-β)>0であ る。 コサx+ シス クケ x+ エオ カキ シス XC となり, は最小値 セソをとる。 以上のことから,点Pのx座標がタ コサ と変形でき, 0<x≦9の範囲で のとき, ∠APBは最大である。 (数学ⅡⅠI・数学B 第2問は次ページに続く。) (第3回 8 )

回答募集中 回答数: 0
1/7