学年

質問の種類

数学 高校生

(2)の解説でで(-1)^2-2a(-1)+2はなんで0にならないんですか??

(2) (1)より (x+1)(x²-2ax+2)=0 ......① x=-1, x2-2ax+2=0... ② 51 ①が異なる3つの実数解をもつので、 ②がx=-1 「以外の異なる2つの実数解をもてばよい. (-1)2-2a(-1)+2=0 よって, a²-2>0 Ja=-3 a+ 異なる2点で交わるから> ②がx=-1 を解に もつと異なる3つの 解にならない la<-√2/√2<a したがって, 求めるαの値の範囲は a<-, - <a<-√2, √2<a 2' 注 (1) (解I) と (解ⅡI) の違いは, (解I)ではf(x)のxに何を代入 するかを自分で見つけてこないといけないのに, (解ⅡI)ではその必要 基礎問 には、入 問題を言 「基礎 ためてあ 題され 基礎問 教科 特に でき 精講 カテ は すく 30 高次方程式 (1)3次式(2a-1)x2-2(a-1)x+2 を因数分解せよ. (2) に関する方程式 x³-(2a-1)x²-2(a-1)x+2=0 が異なる3つの実数解をもつようなαの値の範囲を求めよ、 (1)3次式の因数分解といえば, 因数定理 (27 もちろん,これで解答が作れます (解I) が, 数学Ⅰで 文字が2種類以上ある式を因数分解するときは,次数の一番 い文字について整理する ということを学んでいます. (I A4 復習も兼ねて、こちらでも解答を作ってみます(解ⅡI). II) 第2章 がありません. 代入するπは,土 定数項の約数 最高次の係数の約数 しかないこと が知られています. だから 代入するxの値の候補は±1, ±2の4つ (1)より (1次式) (2次式)=0 の形にできました. しかないのです. (1次式) = 0 から解が決まるので, (2次式) =0 が異なる2つの実数 注 は因数分解できないので, (判別式) 0 を使います. 2-2ax+2=0 もてばよいように思えますが,これだけでは不十分です. 解答 ポイント (1) (解Ⅰ) 高次方程式は, 2次以下の整式の積に因数分解して考 える f(x)=x-(2a-1)-2(a-1)x+2 とおく. f(-1)=-1-(2a-1)+2(a-1)+2 「f(x)=」 とおくの =-1-2a+1+2a-2+2=0 は,因数定理を使う 準備 注 因数分解できなくても、このあと学ぶ微分法を使うと解決します。 (95) =(x+1)+2(x+1)-2.x(x+1)a _=(x+1){(x+2)-2ax} =(x+1)(n-2ax+2) =(z+x+2.c+2)-2(x2+ma (解Ⅱ) f(x)=(x+1)(x²-2x+2) x³-(2a-1)x2-2(a-1)x+2 よって, f(x)は+1 を因数にもち, xに数字を代入した 演習問題 30 複素数 1+iを1つの解とする実数係数の3次方程式 ときに, αが消える x+ax2+bx+c=0 ......① ことから,f(-1)=0 を想像する について、 次の問いに答えよ. (1) b, c をαで表せ . (2) ①の実数解をαで表せ. (3) 方程式①と方程式-bx+3=0 ・・・・・・ ② がただ1つの実数解 を共有するとき, a, b c の値を求めよ.

未解決 回答数: 1
数学 高校生

問題文で言っている逆像法のような考え方はなんとなく理解できたのですが、なぜ調べるのは、すべての解を含む範囲ではなく、満たす解を少なくとも一つ持つ範囲なのでしょうか? その場合、満たさない解の範囲までも図示しちゃいませんか?

128 図形の通過領域 (2) 重要 例題 直線 y=2tx-f2+1 00000 ...... ①について、が0に≦1の範囲の値をとって変化す 重要 127 るとき, 直線 ①が通過する領域を図示せよ。 指針 重要例題127と同様, 直線の通過領域を求める問題である。 重要例題 127では,直線 処理できたが,本間のtのとりうる値の範囲には制限 (0≦t≦1) があるため, 判別式だ y=2ax+αのα がすべての実数値をとって変化するため, 実数解条件 (D≧0)だけで けで解くことはできない。 しかし、基本的な考え方は同じで 見方を変えて考えればよい。 つまり、 逆像法で 直線 ①が点(x, y) を通る ① を満たす実数t (0≦≦1) が存在する と考える。 ①をtについて整理すると P2-2x+y-1=0 ...... ② よって, tの2次方程式 ② が0≦t≦1 を満たす解を (少なくとも1つ) もつような x, の条件を求める。 →f(t)=ピ-2xt+y-1とし、放物線 z=f(t) が0≦t≦1の範囲で軸と共有点をも つような条件を調べる(「チャート式基礎からの数学Ⅰ」のか.214重要例題130 参 照)。 なお,正像法による解答は,次ページの別解のようになる。別解の方法では, 2次関 数の最大・最小の問題として進められる分, 考えやすいかもしれない。 ① を tについて整理すると t2-2x+y-1=0 ...... 直線 ①が点 (x, y) を通るための条件は, tの2次方程 式② 0≦ts1の範囲に少なくとも1つの実数解をも つことである。 すなわち、次の [1]~[3] のいずれかの場合である。 ②の判別式をDとし, f(t) =t2-2x+y-1とする。 [1] 0<t<1の範囲にすべての解(*)をもつ場合 条件は D≧0 から よって f(0) > 0から D≥0, f(0)>0, f(1)>0, 軸が0<t<1の範囲にある (-x)^-1(y-1) ≧ 0 y≦x2+1 y-1>0 tの2次方程式と考える。 ■下に凸の放物線。 軸は直線t=x (*) 異なる2つの解または 重解。 [1] 解答 ゆえにy>1 [D=0/ f(1)>0 から 1-2x+y-1>0 よってy>2x D>O 軸は直線t=x であるから 0<x<1 + + 0 まとめると y≦x2+1, y> 1, y>2x, 0<x<1 [2] 10 [2] 0<t<1の範囲に解を1つ, t<0または1<tの範 囲にもう1つの解をもつ場合 f(0)f(1) <0から (y-1)(y-2x)<0 [y>1 ゆえに Jy<1 または Ly< ly>2x 1t または

未解決 回答数: 1
1/1000