学年

質問の種類

数学 高校生

69. なぜこの解き方では答えが求まらないのでしょうか?? (指針ではOH・AB=0,OH・AC=0だと書いていますがOH・BC=0も成り立つと考えこれを用いて求めようとしました。)

基本例題 69 平面に下ろした垂線 (1) 00000 空間において, 3点A(5, 0, 1),B(4,20, 0, 1,5) を頂点とする三角形 ABCがある。 原点O(0, 0, 0) から平面ABCに垂線を下ろし, 平面ABCとの 交点をHとするとき, Hの座標を求めよ。 MOKE LAANE 指針点 0 から平面ABCに下ろした垂線の足Hに対して, 点Hは平面ABC上にあり,かつ,直線OH は平面ABC に垂直である ととらえて考える。 ... HOX- 外直線OH は平面ABCに垂直であるから、直線 OH は平面ABC 上のすべての直線と垂直である。 ただよって、OHA, OHAC ゆえに OH・AB = 0, OH・AC=0 する単位べク |解答 AB=(-1,2,-1), AC = (-5, 1,4)×0+0×S+(I−)×(1 ①点Hは平面ABC 上にあるから, AH=sAB+tAC (s, tは実 CHONDRAL 114 60 数) (*) とおける。 ゆえに OH=OA+AH $1-01x6 =OA+sAB+tAC =(5,0,1)+s(-1, 2, -1)+t(-5, 1,4) ①00× =(5-s-5t, 2s+t, 1-s+4t)・ OH (平面ABC) であるから OH⊥AB から OH・AB=0 よって ゆえに OHACから 2s+t=2 -(5-s-5t)+2(2s+t)−(1¬s+4t)=0 OH・AC=0 よって ゆえに ② ③ を解いて よって, ① から ...... -5(5-s-5t)+1・(2s+t)+4(1-s+4t) = 0 s+14t=7 OHLAB, OHLAČ S= 7 9' 9 H(2, 2, 2) A t= - (801) A C x TEL ZA HA4 C OH B HO 重要 71 ****** CA SCORT! B (8)=(2004)+(A)+¹(SADA) A (*) OH =LOA+mOB+nOC, l+m+n=1として考えても よい。 (0) 487 2章 9 位置ベクトル、ベクトルと図形

未解決 回答数: 1
数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学 幾何学 専門の方からすると基本問題と伺ったのですが、私が文系大学生ということもあり、何も解答を出せません。 解答を出していただけますと幸いです。 3題のうち1題だけでもとても嬉しいです。 よろしくお願いいたします。

1. S2 = {(x,y,z) ∈ R3 | x2 + 42 + 22 = 1} を単位球面とし, R3 のry平面を自然に R2 と同一 視する: {(x, y,0) | (x, y) = R²} ↔ R², (x, y,0) ↔ (x, y). “北極” (0,0,1) 以外の各点 p∈ S2 に対し, p と (0,0,1) を結ぶ直線と xy平面との交点を n(p) とすることで 写像 ゆN: S2\{(0,0,1)} → R2 が定まる. これを北極からの立体射影とよぶ.同様に,p∈ S2\{(0,0,-1)} と “南極” (0,0,-1) を結ぶ直線を考えることで, 南極からの立体射影 $s: S2 \{(0,0,-1)} → R? ができる.これらにより与えられる球面の二つの“地図”(局所座標)の間の変換 son²を 考えよう.この座標変換の定義域 (すなわち ♀N の行き先の R2 の中の適当な開集合) 上の 座標軸に平行な直線たち Lk={(x,k)|n∈R}, L'k={(k,y)|y∈R}(k= -2,-1,0,1,2) (下の図を参照) を pson でうつしてできる曲線の絵を描け. L2 L1 Lo L_1 L-2 I'_2I'_L' LL'2 son の式を計算して求めても、 作図によって求めても良い. 答えだけではなく, 理由も (読み手が理解できるように) 説明すること.

未解決 回答数: 1
1/17