学年

質問の種類

数学 高校生

オレンジで印をつけたところについて。なんで両方ともイコールがついてるんですか?a<1の場合、a=1の場合、a>1の場合のように区別するんじゃないんですか?

40 72次関数の最大・最小/定義域が一定区間 αを定数とする. 2次関数y='ー2ax+3の0≦x≦2における最大値 M (α) を, 最小値をm(a) とする.M(a), m (α) を求めよ. またM(α) -m (a) の最小値を求めよ. ( 類 摂南大) v=d(x-p2qのグラフ m 2 平方完成 2次関数の値の変化の様子をとらえるには, y=d(エーp)2+qの形 (平方完成) にすることが絶対的であって (ェが1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる), 関数値は 1/4 d>0 d<0....... |ーカが大きいほど小さくなる d0.......が大きいほど大きくなる というように変化することが分かる. d<0 g-- 9 0 P x 70 P 最大・最小 下に凸 (2次の係数が正) の場合、区間α ≦x≦ β における最大・最小は下のよう. v=f(x) 最大はこれらを使って ① (軸) (軸) ② ③ ④ 最小 最大 (6) 最小 最小 最大 最大: 最大: Ü v v Û Û Û Ü け f= fla 05 a 0 x α Bx x a B α B x a B x 最小はこれらを使って 区間の中点 最小値は, 対称軸が区間内であれば頂点の座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1, 3). 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④, ⑤), 右側にあればf (α) (⑥ ⑦) である. +B 2 ■解 fl: グラン 解答 f(x) =ュー2ax+3 ア とおくと, f(x) = (x-α) -α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2 における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦a のとき,M(α)=f(0)=3 また, 0≦x≦2における最小値は, 軸が区間に入るかどうかに着目して 0≦a≦2のとき, m(α)=f(a)=-α2+3 [注] M(α), m (α) はαで表され ることから,M (α) -m (α) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする(上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け)。 上図の② ①③で場合分けする. つぎ ここ b a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM (α), m(a), M(α) -m (α) は次のようになる. 直線 b=-4a+4 であ よ ■m (α) の場合分 [0≤a≤2 図 1 直線 b=44-4 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 0≤a≤1 -4a+7 3 -4a+7 -a²+3 -4a+4 (a-2)² 1≤a≤2 2<a 3 3 -a²+3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 0 2 a としてもよい。 境界のα=0, 2 では2つの m(α) の式で通 用し、 同じにな るかでミスを チェックできる. b=M(a)-m(a) のグラフは右図のようになるから, α=1のとき最小値1 07 演習題 (解答は p.56) a を実数とする.y=a(x-a)+1の-1≦x≦2における最大値Mを求めよ。 (愛知医大・看護)の符号にも注意する。

解決済み 回答数: 1
数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
数学 高校生

この問題でx=0で微分可能でないことは、計算して求めますか?解答には、計算式が書いてなかったのですが、x=0で微分可能でないことはすぐわかることなのですか?回答よろしくお願いしますm(_ _)m

関数y=|x|√x+2の極値を求めよ。(笑) ReAction 関数の増減は、 導関数の符号を調べよ IIB 例題220 ③開 noboA 思考プロセス 場合に分ける xの範囲 (定義域に注意) xx+2 |x|√x+2= ] のとき)← -x√x+2 それぞれ微分を考える ] のとき) 絶対値記号を含む関数の注意点 ・・ 関数が微分可能でない点で極値をとる場合が ある。 y to 例 x=0で微分できないが極小 y=|x| y 例題 よって, x>0 66 X y′ = √x +2 + 定義に戻る 極小・・・ 減少から増加に変わる点 極大・・・ 増加から減少に変わる点 解この関数の定義域は,x+2≧0 より x≧-2 (ア) x≧0 のとき y=x√x+2 減少 増加 x 極小 By = |x|√x+2は x=0で微分できない。 Point参照。 2√x+2 3x+4 2√√x+2 >0 (イ) −2≦x< 0 のとき y=-x√x+2 3x+4 よって, -2<x< 0 のとき y' 関数の微分は定義域の 端点 x=-2では考えな 2√x+2 y=0 とすると 8 -2 ... 4 43 : 0 x=- い。 |極大 4√6 YA 19 3 + 0- + (ア)(イ) の増減 表は右のようになる。 4√6 y 0 > 7 07 9 よって、この関数は x=- 4 -1 のとき 極大値 3 46 9 x = 0 のとき 極小値 0 -24 0 x=0 のときy' は存在 しないが, x= 0 の前後 で減少から増加に変わる から、極小となる。 x 極小 lim Point... 微分可能でない点と極値・ 関数f(x)=|x|√x+2 において XITO f(x)-f(0) = =√2, lim == -√2 f(x)-f(0) 300= x-0 x-0 m 微分可能でない。 しかし, x = 0 の前後で f'(x) の符号

解決済み 回答数: 1
1/225