学年

質問の種類

数学 高校生

(2)の問題の積の微分公式の証明の仕方が、答えを見ても分かりません。教えて下さい🙇‍♀️

3 定義、公式の証明 1) 関数f(x)のx=αにおける微分係数の定義を述べよ。 (0) ェ x (2) 関数f(x), g(x) が微分可能であるとする。 積の微分公式 {f(x)g(x)}=f'(x)g(x)+f(x)g' (z) を証明せよ. 0800-1- (宮崎大〉 A(3) f(x)=x" (n=1, 2, 3, ...) に対し,f'(x)=nz"-1であることを,数学的帰納法により 示せ. 定義をしっかり押さえておく 意 (上智大理工) 「連続」「微分可能」の定義をしっかり押さえておこう(p.34) 連続とはグラフがつながっている, 微分可能とはグラフがなめらか,というグラフのイメージをきち んと定式化したものである.なお, x=αで微分可能であれば, x=αで連続である.これは, lim{f(a+h)-f(a)}=lim·n=f' (a).0=0 f(a+h)-f(a) .. limf (a+h)=f(a) h→0 h→0 h→0 と示すことができる. 逆は成り立たない (反例は,f(x)=|x-al). 公式を証明できるようにしておく 教科書に載っている公式を証明せよ,という意表をついた出題 もある. 定義から微分の公式を証明させる問題が多いので, 教科書で確認しておこう. ( ので注意 解答 300 (1.1)\ (1) 極限値lim- h→0 f(a+h)-f(a) h x=αにおける微分係数といい、f'(α) と書く. (2) f (x+h)g(x+h)-f(x)g(x) =f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x) =f(x+h){g (z+h)-g(x)}+{f(x+h)-f(x)}g(x) XN が存在するとき,この値を関数 f(x) のこの極限値が存在するとき、 関 f(x)はx=αで微分可能である という. - ・① ①=f(エ .. -=f(x+h)- h g(x+h)-g(x) h + f(x+h)-f(x) h -g(x) h→0 として,{f(x)g(x)}=f(x)g'(x)+f'(x)g(x)ol (虹) 上式も公式と同じようにすぐ! ●えるようにしよう (3)(xx)'=nrn-1 ..... ・・・・Aであることを粉学的県紬法)に

解決済み 回答数: 1
数学 高校生

(1)の答えで、 2枚目の写真の左の式を使っても大丈夫ですか?

3 定義、公式の証明- (1) 関数f(x)のx=αにおける微分係数の定義を述べよ。( (2) 関数f(x), g(x) が微分可能であるとする. 積の微分公式 {f(x)g(x)}=f'(x)g(x)+f(x)g'(x) を証明せよ. 宮崎大 (3) f(x)=x"(n=1, 2, 3, に対し,f'(x)=nzn-1であることを,数学的帰納法により IS (上智大理工) せ 定義をしっかり押さえておく 「連続」「微分可能」の定義をしっかり押さえておこう(p.34) 連続とはグラフがつながっている, 微分可能とはグラフがなめらか,というグラフのイメージをきち んと定式化したものである.なお,r=αで微分可能であれば, x=αで連続である.これは, f(ath)-f(a) lim{f(a+h)-f(a)}=lim ・h=f' (a) •0=0 ∴ limf(a+h)=f(a) h→0 h→0 h→0 と示すことができる. 逆は成り立たない (反例は,f(x)=|x-al). 公式を証明できるようにしておく 教科書に載っている公式を証明せよ,という意表をついた出題 もある。定義から微分の公式を証明させる問題が多いので,教科書で確認しておこう)() 解答する (9) + f(a+h)-f(a) (1) 極限値lim- h→0 x=αにおける微分係数といい、f'(α) と書く. が存在するとき,この値を関数f(x) の この極限値が存在するとき,関数 f(x)はx=αで微分可能である という. (2) f (x+h)g(x+h)-f(x)g(x) ①

解決済み 回答数: 1
数学 高校生

高校数学① 確率の単元です。 (4).(5)を詳しく解説してくださると嬉しいです。

1501 2349 2799 3270 3764 $399 5003 643 040 607 15 CO 20) 二つの袋A,Bがあり, 袋Aには赤球9個 白球1個の計10個の球が入って おり 袋Bには赤球2個,白球 8個の計10個の球が入っている。 袋AとBは 外見がそっくりで、外から袋の中身は見えない。 太郎さんと花子さんは, 無作為に袋を選び, その選んだ袋から球を無作為に取 り出すという試行について議論している。 会話を読んで、下の問いに答えよ。 花子: 袋に関しては,Aが選ばれやすいとかBが選ばれやすいとかという情 報が全くない状況では,それぞれの袋が選ばれる確率は等しく だね。 2 太郎: 無作為に袋を選び, その選んだ袋から無作為に球を1個取り出す試行 を考えよう。 (1) この試行で、赤球を取り出す確率は 太郎: こういうことが確率 花子: 試しにやってみよう。 無作為に袋を選び, その選んだ袋から無作為に 球を1個取り出してみると・・・ 赤球が出たよ。 アイ で起こるということだね。 p> アイ ウエ ウエ 花子 : 赤球が出たということは,私が選んだ袋はおそらく袋Aだったのでは ないかな? 太郎 袋Aだった可能性が高いね。 もちろん, 袋Bを選んでいる可能性も否定 はできないけれども, 袋Bなら赤球を取り出す可能性はわずかだからね。 花子: いま取り出した赤球を元の袋に戻すね。 そのうえで、 元に戻した袋か らもう一度無作為に球を1個取り出すとき、 再び赤球を取り出す条件 付き確率はいくらかな? 太郎: 選んだ袋はAの可能性が高いから,おそらくは、 アイ ウエ である。 を満たすよね。 花子の正確な値を計算してみよう。

回答募集中 回答数: 0
1/3