学年

質問の種類

物理 高校生

問4で解き方はわかったのですが、自分で置いたvを消去する方法を教えてください。

22 2022年度 物理 物理 (1科目: 60分 2科目 : 120分) Ⅰ 図1のようになめらかな水平面上で質量mの小球Aと質量mの小球Bが 同じ速さでx軸からの角度45°で進み、座標の原点で衝突した。衝突後,小球 A は角度の向きに速さで進み、小球Bは角度0g の向きに速さひBで進んだ。 ただし、0はx軸から反時計回りを正とし, 0g は x軸から時計回りを正とする。 また、小球Aと小球Bが衝突するとき互いに受ける力はy軸方向であった。以下 の間1~4に答えなさい。なお,問3と問4は、解答の導出過程も示しなさい。問 題の解答に必要な物理量があれば、それらを表す記号は全て各自が定義して解答欄 に明示しなさい。 (配点25点) 問1 衝突前の二つの小球の運動量の和のx成分とy成分を含む式で答えな さい。また、衝突後の二つの小球の運動量の和のx成分と成分を角度0A, 0g を含む式で答えなさい。 2 衝突後の二つの小球の運動量の和のx成分と成分をvo を用いて答えなさ い。 3 この衝突が完全弾性衝突である場合に, tan by を ma.mB のみを含む式で表 しなさい。 問4 次に、小球Aと小球Bが完全非弾性衝突により一体となった場合を考え る。この場合,小球Aと小球Bの運動エネルギーの和が, 衝突の前後でどれ だけ変化するか, m, MB, Vo のみを含む式で表しなさい。 II #1 問 小球 A Vo Vo 小球 B 電場の向きがわかる 45° 45° 小球 A 図 1 Or 0B 小球 B UA VB 】1~5に答 2022年度 物理 23 さい。 なお、 問3~5 あれば、 を を含 また,図中に

回答募集中 回答数: 0
物理 高校生

なぜ、この問題において運動量保存の法則が使えるのですか? 詳しく説明教えてください!

104 図のように長さの糸に結ばれた質 2 量mの小球Aが水平面から高さしの 位置にあり、点〇の真下の水平面上には質 量mの小球が静止している。小球Aを 初速度0で静かにはなし 小球Bと衝突さ せる。重力加速度の大きさを」とする。 (1) AとBが完全弾性衝突をするとき,衝 突直後のAとBの速さを求めよ。 着目!「完全弾性衝突」とは,は ねかえり係数が1の場合です (e=1) (図5-13)。10で当たって、10ではね かえってくるということです。 一方、「完全非弾性衝突」は、はね かえり係数が0という意味です(e= 図5-14) つまり はねかえって こないということですね。 物体が壁に 当たって、くっついて離れない状況を イメージしてください。 では解いてみ ましょう。 A (m) (2) AとBが完全非弾性衝突をするとき, AとBは一体となって振り 子運動をする。AとBは水平面からどれだけの高さまで上がるか。 (3)(2)の場合に,衝突によって失われた力学的エネルギーはいくらか。 橋元流で。 解く! 完全弾性衝突とは はねかえり係数=1 10 10 15-12 完全非弾性衝突とは はねかえり係数= 0 ベチャ! 図5-13 END 準備 小球Aは 円運動をしながら落ち, 最 下点で小球Bに当たりま す。 そのときの速さを求めましょう。 円運動の解きかたについては,第7講 で詳しくやりますので、いまは力学的エネルギー保存則が使えるというこ とだけ知っておいてください。 【P.136】 END 図5-1-

未解決 回答数: 2
1/3