学年

質問の種類

数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
数学 高校生

赤線の変形を教えて欲しいです

検討 ② 164 268 基本例 164 図形の分割と面積 (2) 0000 △ABCにおいて, AB=8, AC=5, ∠A=120°とする。 ∠Aの二等分 辺BCの交点をDとするとき, 線分AD の長さを求めよ。 ( 1辺の長さが1の正八角形の面積を求めよ。 p.265 基本事項 指針 (1) 面積を利用する。 △ABC=△ABD+△ADC であることに着目。 AD = x この等式からxの方程式を作る。 (2) 多角形の面積はいくつかの三角形に分割して考えていく。 形の外接円の中心と各頂点を結び,8つの合同な三角形に分ける。 ここでは、 CHART 多角形の面積 いくつかの三角形に分割して求める (1)AD=x とおく。△ABC=△ABD+△ADCであるから TEA 基本 例題 に内接する る。 次の ACの 円 Et (1) (2) (3) 1 解答 1 ・・8・5sin 120° 2 - 8.xsin 60°+ = 2 ・・x・5sin 60° 8 60° ゆえに 40=8x+5x 60 40 B よって x= 40 13 すなわち AD= D (1) 13 =AO (2) 図のように,正八角形を8個の合同な三角形に分け, 3点O, A, B をとると OA=OB=α とすると, 余弦定理 により 12=a²+a2-2a a cos 45° 整理して (2-2)²=1 ∠AOB=360°÷8=45° - A--1-- BAGA 45% a GA ゆえに a²=- 1 2-√2 2+√2 2 AB2=OA2+OB2 -20A-OB cos 4A0 ここではαの値まで よって、求める面積は めておかなくてよい。 8A0AB=8. masin45°=2(1/2) 14.2+2/21/ 8-CA a=√2 (2+√2) AD=AB・AC-BD・CD (p.257 参考)の利用 上の例題 (1) は,p.257 参考を利用して解くこともできる。 △ABCにおいて, 余弦定理により BC=√129 よって、 右の図から AD2 = 8.5- 8√1295/129 402 13 13 132 AD> 0 であるから 40 AD= B 13 8 A 60° 60° 5 (1) △ABCにおいて, ∠A=60°, AB=7, AC=5のとき.∠Aの二等分線が (2) BCと交わる点をDとすると に

解決済み 回答数: 1
数学 高校生

数1・三角比 三角比・三角形の面積の問題です。 写真の(1)の問題が解けません。 なぜ私の解き方で解けないのかわからないです。教えてくださると嬉しいです🙏

基本 164 図形の分割と面積(2) 00000 (1) △ABCにおいて, AB8, AC = 5, ∠A=120° とする。 ∠Aの二等分線と 辺BCの交点をDとするとき、 線分AD の長さを求めよ。 (2) 1辺の長さが 1 の正八角形の面積を求めよ。 基 P.265 基本事項2,4 円 す (1) 指針 (1) 面積を利用する。 AABCAABD+△ADC であることに着目。 AD=xとして この等式からxの方程式を作る。 (2) 多角形の面積はいつかの三角形に分割して考えていく。 ここでは、正八 形の外接円の中心と各頂点を結び、8つの合同な三角形に分ける。 CHART 多角形の面積 いくつかの三角形に分割して求める (1) AD=x とおく。 △ABC=△ABD+ △ADC であるから 【指 解答 1 2 ・8・5sin120°= 8.xsin60°+1/2 11/23x5 ・x・5sin 60° ゆえに 40=8x+5x よって x= 40 13 40 B すなわち AD= 13 検討 (2) 図のように, 正八角形を8個の合同な三角形に分け, 3点 0, A,Bをとると ∠AOB=360°÷8=45° OA=OB=α とすると, 余弦定理 により 12=α²+α2-2aacos 45° 整理して (2-√2)²=1 A --1--B 45% a ゆえに q=_1 2+√2 = 2-√2 2 よって, 求める面積は 8△OAB=8sin45°=2(1+√2) AD=ABAC-BD・CD (p.257 参考)の利用 上の例題 (1) は, p. 257 参考を利用して解くこともできる。 △ABCにおいて, 余弦定理により BC=√129 8 60° 160 D 解答 AB2=OA2+OB2 2OA・OB cos ∠ADB ここではαの値までま めておかなくてよい。 41.2 + √21/17 =√2 (2+√2) よって, 右の図から AD2=8・5- 8/129 5/129 402 13 13 132 40 B AD> 0 であるから AD= 13 A 8 60° D 練習 (1) △ABCにおいて, ∠A=60°,AB=7,AC=5のとき,Aの二等分線が ② 164 RC h z tkDk+ZKAD: となる [(1) 国士館大

解決済み 回答数: 1
1/4