学年

質問の種類

数学 中学生

分からないのでわかる方いたら、解説お願いしますm(_ _)m

10 関数 y=ax2 ✓チェックコーナー 中学で学習したこと 1 関数 y=ax² yはxの2乗に比例し、x=3のとき y = 18 であるとき ポイント xの式で表すと y=l ] x=2のときy=[ 2 関数y=ax のグラフ (1) 関数 y=ax のグラフを[ ]という。 (2) グラフは [ ]を通り, [ ]軸について対称。 (3) α > 0 のときは, [ 開いた形。 ]に開いた形α 0 のときは [ (4) αの値の絶対値が小さいほど, グラフの開き方は [ 51 関数y=ax のグラフが点 (2,-4) を通るとき、 次の問に答えな さい。 (1) α の値を求めなさい。 y 0 x 2 ]に 0 [増] ]。 (2)この関数のグラフをかきなさい。 -6- (3)この関数のグラフは,点(-5,m) を通る。 m の値を求めなさい。 -8 052 右の図の(1)~(4) は下のテ〜 エ の関数のグラフを示したものである。 (1)~(4) はそれぞれどの関数のグラフか ⑦ y=x2 ①y=-2x2 ⑦y= H A 12 23 x2 -10 ·12 (1) (3) (4) (2) y = ax¹ a> o yはxの2乗に比例し 153 で表しなさい。 x=-3のとき y=3であるとき yをxの式 関数 y = 2x で, xの値が1から めなさい。 3)関数y= めなさい。 1から3まで増加するときの変化の割合を求 -xで,xの変域が2≦x≦5のときのyの変域を求 4)関数y=ax2 で, xの値が4から2まで増加するときの変化の割合 は3である。の値を求めなさい。 5) 関数 y=ax2 で, xの変域が-1≦x≦3のとき, yの変域が 0≦ys6 の値を求めなさい。 である。 α 154 右の図のように、関数y= 1 2 xのグラ 上に, x座標がそれぞれ3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, 座標は3である。 次の問に答えなさい。 (変化の割合) _yの増加量) ( xの増加量) 変化の割合は、 1次関数 y=ax+bで は一定だが、 数y=axで は一定ではない。 (3)y の変域を 求めるときは、 グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず 物 と直線の交点 A,Bの座標を 求める。 直線AB の式を求めなさい。 <座標に目もりが 2 △AOBの面積を求めなさい。 ないが、放物線 線分AC 上の点で, △AOBAPB となるような点Pをとる。 点Pの がどちら側に いているか 開 座標を求めなさい。 き方の大きさは どうかから考え ると,答えられ x る。 < (2) AAOB & y 軸で2つの三角 形に分けて考え るとよい。 (3)直線AB と 平行で点を通 る直線と線分 AC との交点を 考える。 高校で学習すること 高校では, 関数 y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行 移動させたグラフ(頂点が原点0にない放物線) を学習する。(数学1 ) y=ax W 0 原点 -(2.α) I チェック 1 2x2, 8 2 (1) 放物線 (2) 原点 (0),y (3) 上下 (4) 大きい

未解決 回答数: 1
数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
数学 高校生

125(2)の abcdの計算の仕方がよくわかりません 解説よろしくお願いします!

□125 腐食連鎖 次の文章を読み、以下の問いに答えよ。 植物が太陽エネルギーを用いて大気中の炭素から合成した有機物の一部は、植物を 直接とする植食動物や、さらにこの動物を食べる肉食動物の生命活動を支えるエネ 直接に食う食物連鎖の流れをたどる。一方, 植物が合成した有機物の一部は、枯れ ルギーとして消費されながら、生食連鎖(植物生体を出発点とし、生きている生物を 業や枯れ枝などとして地表に堆積し、動物の遺体や排出物とともに、微生物などが分 解する腐食連鎖に取り込まれる。 このように、生態系を構成するそれぞれの栄養段階 をつなぐ食物連鎖は、生食連鎖と腐食速鎖から成り立っている。 下図は、これらの を模式的に示したものである。 生食連鎖 純生産量 総生産量 (ア) (イ) 摂食 (ウ) 成長量 (生産者) 生産量 (エ) (オ) 摂食 成長量 (カ) 枯 不消化排出量 死 量 (消費者) 腐食連鎖 (分解者) ある照葉樹林では,総生産量の70%が生産者自身の(ア)として消費されていた。 また1ha あたりの1年間の(イ)は60kg, 同じく枯死量は10800kg,現存量の 増加量 (成長量) は 3540kgであった。 この森林で1年間に生産者自身の (ア)とし て消費された有機物の量は,1ha あたり (a) kg, 純生産量は(b)kgであり, この純生産量のうち植食動物に摂取される量は (c) %である。 また、この森林に おいて生産者から腐食連鎖に流れる有機物の量は, 生食連鎖に流れる有機物の量の (d) 倍である。 (1) 図のア~カにあてはまる適切な語句を,下の語群からそれぞれ選べ。ただし、同 じ語句を何回選んでもよい。 また,図のアイは文中のア, イと対応している 図中の枠の面積は実際の値とは異なる。 〔語群] 総生産量, 純生産量, 光合成量,呼吸量, 成長量, 被食量, 同化量, 死亡量, 捕食量, 現存量 (2)図を参考にして、文中のadに適切な数値を入れ、文章を完成させよ。 ただし、 答えに小数を含む場合は,答えを四捨五入して小数点以下第1位まで書け。 (京都大)

回答募集中 回答数: 0
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

【5】(3)2.4×10^-5 J 【6】(3)Q²/2ε0S N になる理由を教えていただきたいです🙇🏻‍♀️

第4編 電気と磁気 20 電気容量がそれぞれ9.0μF, 1.5μF, 3.0μFの 5 コンデンサー回路 (p.246~248,250~251) コンデンサー C1, C2, C3, および 6.0V の直流 電源Eを,図のように接続した。 各コンデンサー 5 は、電源Eを接続する前は電気量を蓄えてい ないものとする。 apf C₁ HH (1)接続した3個のコンデンサーの合成容量 C〔μF] を求めよ。 11C/15 μF E (2) 各コンデンサーに蓄えられる電気量 Q1 Q2, Q3 [μC] を求めよ。 コンデンサー C3 に蓄えられる静電エネルギー U[J] を求めよ。 6 コンデンサーの極板が及ぼしあう引力 (Op.250~251) 極板面積 S[m²], 極板間隔d [m] 極板間が真空のコ ンデンサーにQ[C] の電荷を与える。 真空の誘電率を co〔F/m] とする。 (1) コンデンサーが蓄えている静電エネルギーU [J] 15 を求めよ。 6v 3MF Ad d (2) 極板上の電荷が逃げないようにして, 極板間隔を4d[m]だけゆっくりと広げ るとき,静電エネルギーの増加量を求めよ。 2枚の極板は正負に帯電しているので、引力を及ぼしあっている。この引力に 逆らって極板を引き離すために,外から加えた力のした仕事が (2)の静電エネ ルギーの増加になったと考えられる。外力の大きさがこの引力の大きさに等し いとして,この引力の大きさ F[N] を求めよ。

回答募集中 回答数: 0
1/76