学年

質問の種類

数学 中学生

答えを紛失してしまったので答え合わせをして欲しいです。

単元テスト ① (1) 3,2 (2)-2,-3,-0.5,4 ②(1)+6 (2)一号 ③ (1) ーヶ人多い (1)(-8)×7=-56 (2)(72)÷(-8)=9 (3)0÷(-3)=0 1 用語の意味がわかっていますか。 8 正の数・負の数の乗法や除法ができますか。 下の数について, 次の問いに答えなさい。 次の計算をしなさい。 -2. 3. 2. 0, -0.5, -4 (1) (-8) x 7 (2) (-72)÷(-8) 5' -1198 (1) 上の数のうち, 自然数をすべて書きなさい。 (2) 上の数のうち, 負の数をすべて書きなさい。 (3) 0÷(-3) (4) (-2)×6׳ (6) (2)―4で高い (3)-10分後前 (4)300m北 ④ (1) 4.8 (2)1.2 ⑤ (1)-2,3-0.6 (2)-3-1.4.0.1,05 ⑥ (1)(-7)-(-4)=-7+4 =-3 (2)(-26)+(-17)=-43 (3) -0.8+1.5=0.3 (4)/-(+3)=1/2-1/3 =- (7)-7-12+3=3-7-12 =-16 (2)-8-(+15)+(-7)=-8+15-7 (4)(号)×6=-4 (5)=1/ (6)(一部)=1/ ⑨(1)(-2)×(-3)×(-4)=-24 (2)(-100)÷5×(-4)=80 (3)(-24)÷(-4)÷(-3)=-2 (4)-42÷(-2)3=16÷(-8) =-2 (10 (1) 9+3×(-4)=9+(-12) (2)(-3)2×4+48÷(-8)=36+(-6) =-5 (3)3-14-12-5)×63=3-{4+3×6} =3-22 =-19 (4)3(一)÷2=番一話 =-= (5)(一号+3/3)×(-30)=(-1+1)×(-30) =1/5×(-30) =0 (3) 17-(-8)-9+23=17+8-9+23 =-2 =16 四(1)①③ 二 (2)①②③ 12 (12×311 (2) 1379,5 333 1×5 2 正の符号, 負の符号をつけて、 数を表すことができますか。 次の数を、正の符号 負の符号をつけて表しなさい。 (1) 0より6大きい数 2×4 102 9 3数以上の乗法や除法ができますか。 次の計算をしなさい。 (20より 言小さい数 3 正の数・負の数を使って, 量を表すことができますか。 〔〕内のことばを使って, 次のことを表しなさい。 [10] (1)5人少ない 〔多い〕 (2) 4℃低い 〔高い] (1) (-2) x (-3) x (-4) (2) (-100) ÷ 5x (-4)=20x-4 (3) (-24)(-4)+(-3) (4)-4 ÷ (-2)³ -(2×3×4 正の数・負の数の四則をふくむ式の計算ができますか。 次の計算をしなさい。 +(10÷12) (1) 9 +3× (-4) (2) (-3)" × 4 + 48 ÷ ( 8 ) (3) 10 分後 〔前〕 (4)300m南 〔北〕 12× 12 絶対値の意味がわかっていますか。 14 次の問いに答えなさい。 (1) 4.8の絶対値を書きなさい。 (2) 絶対値が3より小さい整数をすべて書きなさい。 4-(-3) 11 14 48. (3) 3-(4-(2-5) x 6} (4) (5) (-1/+1/2)×(-30) 1/1-30)1+1 数の集合と四則計算の関わりがわかっていますか。 下の①~④の計算の中から、 次の条件にあうものをす 4+3×6 42 5 正の数・負の数の大小関係がわかっていますか。 次の問いに答えなさい。 べて選び 記号で答えなさい。 ①O+□ ② ○ - □ ③ ○ × O÷□ 39 (1) 2.3との大小関係を不等号を使って表しなさい。 (1)○. 口がともに自然数であるとき、答えがいつでも自然 数になるもの (2) 下の数を,小さい方から順に並べなさい。 (2)○. 口がともに0を除く整数であるとき. 答えがいつて も整数になるもの 6 ww -1.4, 1.0.3.0.5 正の数・負の数の加法や減法ができますか。 次の計算をしなさい。 12 素数や素因数分解がわかっていますか。 次の問いに答えなさい。 (1) (-7)-(-4) (2) (-26)+(-17) 26 =-(7-4) =+(0.8+1,5) 6 + (7-12+3) 一番+ (3) (0.8)+1.5) 3数以上の加法や減法ができますか。 次の計算をしなさい。 (1) -7 - 12 + 3 (2) -8 (-15) + (-7) (3)17(-8) 19 +23 (4) (1)/ (+1) 21198 (3)99 + 3133 224 A B E F +5 -9 +11 +8 79 71 79-71+74+83+85+82 74 83 85 82 (1) 198を素因数分解しなさい。 (2) 108 にできるだけ小さい自然数をかけてある自然数の 2乗にするには、どんな数をかければよいですか。 正の数・負の数を使って、問題が解決できますか。 下の表は, A. B, C, D. E. F の6人のテストの点 数からCの点数をひいた値を表したものです。 Cの点数が 74点であるとき、この6人の平均点を求めなさい。 24 C D

解決済み 回答数: 1
数学 高校生

4番がよくわかりません汗 理由は写真2枚目に記載しています。

例題 136 進数の四則計算 XX 計算の結果を、[ ]内の記数法で表せ。 [1111(2) +110 (2) [2進法 ] 3420 (5)2434 (5) (1101 (2)×101 (2) [2進法 ] 0 1101001 (2)÷101 (2) CHART L & SOLUTION (2)+0(2)=0(2),(2)+1(2)=1(2)+0(2)=1(2), 1 (2)+1(2)=10(2) (1), (2) 2進数の足し算 引き算では,次の計算がもとになる。 020(20(2),1(2)-0(2)=1(2), 1(2)-1(2)=0(2), 10(2)-1(2)= 1 (2) 一般に,進数の足し算、引き算も、10進数や2進数と同様に 00000 [5進法 ] [2進法] p.476 基本事項 1 繰り上がり (n-1)(x) +1(㎡)=10(木) 繰り下がり 10() -1(n)=(n-1) (n) に注意して計算する。 (3) 2進数の掛け算では,次の計算がもとになる。 筆算では、2進数の足し算も行う。 0(2) X0(2)=0(2) X1(2)=1(2) X0(2)=0(2), 1(2) X1 (2)=1(2) 2進数の割り算は, 10 進数の割り算と同様、掛け算と引き算を組み合わせて行う。 485 4章 16 (1) 1111(2)+110(2)=10101 (2) (2)3420 (5)-2434 (5)=431(5) 111 11 1111 1+1=2=10(2) に注意し M 3420 ←5進法では 10 11 13 + 110 て上の桁に1を上げる。 -2434 - 4 - 3 - 4 10101 431 I 3 4 16-3-3 (3)1101 (2)×101 (2)=1000001 (2) (4) 1101001 (2)÷101 (2)=10101 (2) 1101 11101×1 の結果。 19101 x 101 1101×100の結果。 2進法では 110 101) 1101001 111 ③和を計算。 (1) と同様 -101 101 11010 に繰り上がりに注意。 1 110 1101 10進法では 1000001 101 110 (2)=6,101 (2)=5 101 であるから 6-5=1 101 0 進法、座標 別解 10 進数に直して計算し、 最後に n進数に直す方法で計算する。 確実な方法 11111 (2) +110(2)=15+6=21=101012 (2) 3420 (5) 2434(5)=485-369=116431(5) 3)1101 (2)×101(2)=13×5=65=1000001 (2) 4) 1101001 (2)÷101(2)=105÷5=21=10101(2)

解決済み 回答数: 1
1/17