学年

質問の種類

数学 高校生

組(a1 a2 a3)と組み合わせ(a1 a2 a3)は一対一対応 の一対一対応とはどのような意味ですか? 詳しく教えてくださいお願いします。

ステージ2 典型手法編 場合の数 前 ITEM で見たように,順列の方が順序を のがふつうです.しかし、条件として順序が指定されている場合には, きます. ここが ツボ! 順序が指定されているなら、「順列」の代わりに「組合せ」を参」 例題20A サイコロを3回投げるとき, 出た目を順に a1,a2,a3 と する. a <az<α3 を満たす組 (a1,a2, α3) の個数を求めよ. 着眼1 第何回の目であるかに応じて au, 42, 43 と名前が付けられていますから、 ○○を区別 ? ろん出た目の順番を区別して考えます. 「組」とは順序を考えたものですから、たとえば (2,3,5)(2,5,3) を異なるものとして数えるべきなのですが,本間では a1,a2, α3 の大小関係が指定 れているため,(2,5,3) などはカウントしません。つまり どの3種類の目が出るか が決まれば,組(a1,a2, α3) も自動的に決まってしまうのです. [解答 a <az<αのとき 6C3= 順列 よって求める場合の数は、サイコロの目 : 1,2,3,4,56から異なる3個の目を選ぶ 組合せを考えて α3)」と「組合せ {a1,a2,a3}」は1対1対応. 「組(a1,a2, 6・5・4=20(通り). 3.2 事情が変わ 解説本来「組合せ {a1,a2,a3) (a1,a2,a3 は全て相異なる)」1つから作られる 「組 (a1,a2, as)」の個数は,3!=6通り)です。つまり「組合せ」と「組」の対応関係は 1:6 ですね.しかし本問では大小関係 「a <az<as」により1:1の対応となります. 組合せ 順序指定なら 1対1 順列 12, 43} は同じものを含む ことが許されるため, やや難しくなり,重複組合せ( ITEM24, ITEM39) を考える ことになります. 参考1 本間の条件が a≦a≦as となった場合, 組合せ {a1,a2, internet の8文字を並べるとき, 3つの母音iee が 例題20B この順に並ぶものは何通りか? 着眼2] 前問において「大小関係α <az<a」が決まって やって みよう1

未解決 回答数: 1
数学 大学生・専門学校生・社会人

例4.28について質問です。(1)のfx^2+fy^2=、、の式までは分かっているのですがそこからいきなり(2)のラプラシアンの式がどうやって出るのかわからないです。どうか教えてください。

19:06 3/3 変数変換を学んだついでに 4.2.7. 変数変換におけるラプラシアンの表示. : 全単射, C2-級, = -1 とする. 関数 f(x) : D → R, g(s) : UR は f(x)=g(y(z)) = g(s) = f (d(s)) をみたしているとする. [5]. f(x,y) = √√√x² + y² = r = g(r,0). (**) of fi = oni, dxi ga = asa のように書く. 添字の,上下, 文字スタイルで区別がある. ここでは∇f = (....fi....), ∇sg = (..., ga,...) は行ベクトル . 逆写像のヤコビ行列は Þ : ((R”, s = (… .., sª,...) > ) U → D ( C (R¹, x = (..., x², ...))) となる.このとき連鎖律より次の関係式が得られる. f(x) = g(s(x)) * x³ THALT, fi = Σa ga$iº. & 5K füi = Σa ((Σ3 9aß$?) sº + 9asi). B (1) ▽zf = ∇sg.d.同様に∇sg = ∇f.do. (2) Axf := Σi fü = Σa‚ß Jaß(Vrsª, ▼+$³) + Σa 9aArsª. 2² 8² Ər² 20² 9回目終わり 例 4.2.8. R2 の極座標でのラプラシアンの表示 重 : UC (R2, (1,0)) → DC (R2, (x,y)), I = 重-1 πr TO cos -r sin 0 d = Yr yo sin 0 rcos o TI Ty cos o sin 1 T dy = = (d)-1 200 - sine cose) == (-²2) r 注: r = x2 +¥2,0 = tan -1 y の微分はしなくても煙は求められる. I (1) (fæ, fy) = (gr,90) · dV. (fz, fy) = (gr, ¼90) U, U = (- 特に fz + f = g + /1/129. 注: d では1列+2列 (1 行 ⊥2 行ではない). d では 1行2行 (1列+2列ではない). 8² a2 8² 12 10 + + + əx² 042 Ər² r² 20² rar + はそもそも考えない. d = (st) at (= (dd) -1): 第α行を ▽ zsa とする行列 lai (4) A = + U= 問題. R3 の極座標でのラプラシアンの表示. (x,y,z)=d(r,0,4)= (rsin A cos o, r sin A sin p, rcos E ↓ = Φ-1 とする. (1) d = (dd) を求めよ. (2) (fx,fu, fz) = (gr, 1,90, sin694) U, Uは直交行列, と書けることを示せ . cos 0 (3) Ar = ², A0 = A = 0 を示せ . r2 sin 0 8² 182 + Ər-2 2002 / sin A cos y sin A sin y cos A cos o cos A sin - siny cos 1 2 20 cos a + rar r2 sin 000 cos o sin 0 sino cos0 72 sin20042 cos 0 - sin 0 0 は直交行列と書ける. を示せ. | .d=Uの2行目に !を3行目に • itc-lms.ecc.u-tokyo.ac.jp 3 rsin 0 を掛けたもの. Ć

未解決 回答数: 0
1/10